×

A fast semi-implicit method for anisotropic diffusion. (English) Zbl 1220.65118

Summary: Simple finite differencing of the anisotropic diffusion equation, where diffusion is only along a given direction, does not ensure that the numerically calculated heat fluxes are in the correct direction. This can lead to negative temperatures for the anisotropic thermal diffusion equation. In a previous paper [the authors, J. Comput. Phys. 227, No. 1, 123–142 (2007; Zbl 1280.76027)], we proposed a monotonicity-preserving explicit method which uses limiters (analogous to those used in the solution of hyperbolic equations) to interpolate the temperature gradients at cell faces. However, being explicit, this method was limited by a restrictive Courant-Friedrichs-Lewy (CFL) stability timestep.
Here we propose a fast, conservative, directionally-split, semi-implicit method which is second order accurate in space, is stable for large timesteps, and is easy to implement in parallel. Although not strictly monotonicity-preserving, our method gives only small amplitude temperature oscillations at large temperature gradients, and the oscillations are damped in time. With numerical experiments we show that our semi-implicit method can achieve large speed-ups compared to the explicit method, without seriously violating the monotonicity constraint. This method can also be applied to isotropic diffusion, both on regular and distorted meshes.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1280.76027

Software:

ScaLAPACK
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alexiades, V.; Amiez, G.; Gremaud, P., Super-time-stepping acceleration of explicit schemes for parabolic problems, Communications in Numerical Methods in Engineering, 12, 31-42 (1996) · Zbl 0848.65061
[2] Baker, A. H.; Jessup, E. R.; Manteuffel, T., A technique for accelerating the convergence of restarted GMRES, SIAM Journal on Matrix Analysis and Applications, 26, 962-984 (2005) · Zbl 1086.65025
[3] Balsara, D. S.; Tilley, D. A.; Howk, C. J., Simulating anisotropic thermal conduction in supernova remnants - I. Numerical methods, Monthly Notices of Royal Astronomical Society, 386, 627-641 (2008)
[4] Basser, P. J.; Jones, D. K., Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review, NMR in Biomedicine, 15, 456-467 (2002)
[5] Berkowitz, B., Characterizing flow and transport in fractured geological media: a review, Advances in Water Resources, 25, 861-884 (2002)
[6] Blackford, L. S.; Cleary, A.; Choi, J.; D’Azevedo, E.; Demmel, J.; Dhillon, I.; Dongarra, J.; Hammarling, S.; Henry, G.; Petitet, A.; Stanley, K.; Walker, D.; Whaley, R. C., ScaLAPACK Users’ Guide (1997), SIAM: SIAM Philadelphia, PA · Zbl 0886.65022
[7] Braginskii, S. I., Transport processes in a plasma, (Leontovich, M. A., Reviews of Plasma Physics, vol. 1 (1965), Consultants Bureau: Consultants Bureau New York) · Zbl 0091.22904
[8] Dian-Lin, Z.; Shao-Chun, C.; Yun-Ping, W.; Li, L.; Xue-Mei, W.; Ma, X. L.; Kuo, K. H., Anisotropic thermal conductivity of the 2D single quasicrystals: \(Al_{65}Ni_{20}Co_{15}\) and \(Al_{62}Si_3 Cu_{20}Co_{15}\), Physical Review Letters, 66, 2778-2781 (1991)
[9] Dong, R.; Stone, J. M., Buoyant bubbles in intracluster gas: effects of magnetic fields and anisotropic viscosity, Astrophysical Journal, 704, 1309-1320 (2009)
[10] Gustafsson, I., A class of first order factorization methods, BIT, 18, 142-156 (1978) · Zbl 0386.65006
[11] Kershaw, D. S., Differencing of the diffusion equation in lagrangian hydrodynamic codes, Journal of Computational Physics, 39, 375-395 (1981) · Zbl 0467.76080
[12] Leveque, R. J., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press · Zbl 1010.65040
[13] Lipnikov, K.; Svyatskiy, D.; Vassilevski, Y., Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes, Journal of Computational Physics, 228, 703 (2009) · Zbl 1158.65083
[14] Nordbotten, I.; Aavatsmark, I.; Eigestad, G. T., Monotonicity of control volume methods, Numerische Mathematik, 106, 255-288 (2007) · Zbl 1215.76090
[15] Parrish, I. J.; Stone, J. M., Nonlinear evolution of the magnetothermal instability in two dimensions, Astrophysical Journal, 633, 334-348 (2005)
[16] Parrish, I. J.; Quataert, E.; Sharma, P., Anisotropic thermal conduction and the cooling flow problem in galaxy clusters, Astrophysical Journal, 703, 96-108 (2009)
[17] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629-639 (1990)
[18] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in C: The Art of Scientific Computing (1992), Cambridge Univ. Press · Zbl 0845.65001
[19] Rasera, Y.; Chandran, B., Numerical simulations of buoyancy instabilities in galaxy cluster plasmas with cosmic rays and anisotropic thermal conduction, Astrophysical Journal, 685, 105-117 (2008)
[20] Ruszkowski, M.; Oh, S. P., Shaken and stirred: conduction and turbulence in clusters of galaxies, Astrophysical Journal, 713, 1332-1342 (2010)
[21] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7, 856-869 (1986) · Zbl 0599.65018
[22] Sharma, P.; Hammett, G. W., Preserving monotonicity in anisotropic diffusion, Journal of Computational Physics, 227, 123-142 (2007) · Zbl 1280.76027
[23] Sharma, P.; Colella, P.; Martin, D. F., Numerical implementation of streaming down the gradient: application to fluid modeling of cosmic rays, SIAM Journal on Scientific Computing, 32, 3564-3583 (2010) · Zbl 1222.85002
[24] Sharma, P.; Parrish, I. J.; Quataert, E., Thermal instability with anisotropic thermal conduction and adiabatic cosmic rays: implications for cold filaments in galaxy clusters, Astrophysical Journal, 720, 652-665 (2010)
[25] Sheng, Z.; Yue, J.; Yuan, G., Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes, SIAM Journal on Scientific Computing, 31, 2915 (2009) · Zbl 1195.65115
[26] Sovinec, C. R., Nonlinear magnetohydrodynamics simulation using high-order finite elements, Journal of Computational Physics, 195, 355-386 (2004) · Zbl 1087.76070
[27] van Leer, B. J., Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, Journal of Computational Physics, 23, 276-299 (1977) · Zbl 0339.76056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.