×

zbMATH — the first resource for mathematics

The growth on the maximum modulus of double Dirichlet series. (English) Zbl 1418.32001
Summary: The main purpose of this paper is to investigate the growth of several entire functions represented by double Dirichlet series of finite logarithmic order, \(h\)-order. Besides, we also study some properties on the maximum modulus of double Dirichlet series and its partial derivative. Our results are extension and improvement of previous results given by Huo and Liang.
MSC:
32A05 Power series, series of functions of several complex variables
32A22 Nevanlinna theory; growth estimates; other inequalities of several complex variables
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yu, J. R.; Ding, X. Q.; Tian, F. J., On the distribution of values of Dirichlet series and random Dirichlet series, (2004), Wuhan, China: Press in Wuhan University, Wuhan, China
[2] Akanksha, A.; Srivastava, G., Spaces of vector-valued Dirichlet series in a half plane, Frontiers of Mathematics in China, 9, 6, 1239-1252, (2014) · Zbl 1308.30004
[3] Meshreky-Daoud, S., On the class of entire functions defined by Dirichlet series of several complex variables, Journal of Mathematical Analysis and Applications, 162, 1, 294-299, (1991) · Zbl 0760.32005
[4] Filevich, P. V., On the Phragmén-Lindelöf indicator for random entire functions, Ukrainian Mathematical Journal, 52, 10, 1634-1637, (2000) · Zbl 0977.30017
[5] Gao, Z. S., The growth of entire functions represented by Dirichlet series, Acta Mathematica Sinica, 42, 4, 741-748, (1999) · Zbl 1014.30002
[6] Huo, Y.; Kong, Y., On the generalized order of Dirichlet series, Acta Mathematica Scientia B, 35, 1, 133-139, (2005) · Zbl 1340.30116
[7] Jin, Q. Y.; Deng, G. T.; Sun, D. C., Julia lines of general random Dirichlet series, Czechoslovak Mathematical Journal, 62, 4, 919-936, (2012) · Zbl 1274.30106
[8] Jin, Q. Y.; Kong, Y. Y., The random Dirichlet series of infinite order dealing with small function, Journal of Jiangxi Normal University (Natural Sciences), 41, 252-255, (2017) · Zbl 1389.30005
[9] Kong, Y.; Gan, H., On orders and types of Dirichlet series of slow growth, Turkish Journal of Mathematics, 34, 1, 1-11, (2010) · Zbl 1189.30004
[10] Liao, L. W.; Yang, C. C., Some new and old (unsolved) problems and conjectures on factorization theory, dynamics and functional equations of meromorphic functions, Journal of Jiangxi Normal University (Natural Sciences), 41, 242-247, (2017) · Zbl 1389.30129
[11] Ru, M., The recent progress in Nevanlinna theory, Journal of Jiangxi Normal University (Natural Sciences), 42, 1-11, (2018) · Zbl 1413.30124
[12] Shang, L.; Gao, Z., Entire functions defined by Dirichlet series, Journal of Mathematical Analysis and Applications, 339, 2, 853-862, (2008) · Zbl 1136.30003
[13] Sun, D. C.; Gao, Z. S., The growth of the Dirichlet series in the half plane, Acta Mathematica Scientia. Series A. Shuxue Wuli Xuebao. Chinese Edition, 22, 4, 557-563, (2002) · Zbl 1011.30002
[14] Yu, J. R., Some properties of multiple Taylor series and random Taylor series, Acta Mathematica Scientia B, 26, 3, 568-576, (2006) · Zbl 1101.32001
[15] Yu, J.-R., Julia lines of random Dirichlet series, Bulletin des Sciences Mathématiques, 128, 5, 341-353, (2004) · Zbl 1059.60011
[16] Chang, X.; Liu, S.; Zhao, P.; Li, X., Convergent prediction-correction-based {ADMM} for multi-block separable convex programming, Journal of Computational and Applied Mathematics, 335, 270-288, (2018) · Zbl 1397.90299
[17] Chang, X.; Liu, S.; Zhao, P., A note on the sufficient initial condition ensuring the convergence of directly extended 3-block {ADMM} for special semidefinite programming, Optimization. A Journal of Mathematical Programming and Operations Research, 67, 10, 1729-1743, (2018) · Zbl 1416.90031
[18] Kong, Y. Y., On some q-orders and q-types of Dirichlet-Hadamard product function, Acta Mathematica Sinica, 52, 6, 1165-1172, (2009) · Zbl 1212.30004
[19] Kong, Y. Y.; Deng, G. T., The Dirichlet-Hadamard product of Dirichlet series, Chinese Annals of Mathematics, 35, 2, 145-152, (2014) · Zbl 1313.30125
[20] Reddy, A. R., Approximation of an entire function, Journal of Approximation Theory, 3, 128-137, (1970) · Zbl 0207.07302
[21] Reddy, A. R., Best polynomial approximation to certain entire functions, Journal of Approximation Theory, 5, 1, 97-112, (1972) · Zbl 0312.41004
[22] Sheremeta, M. N.; Fedynyak, S. I., On the derivative of the Dirichlet series, Siberian Mathematical Journal, 39, 1, 181-197, (1998) · Zbl 0940.30014
[23] Xu, H. Y.; Yi, C. F., An approximation problem for Dirichlet series of finite order in the half plane, Acta Mathematica Sinica, 53, 3, 617-624, (2010) · Zbl 1224.30010
[24] Xu, H. Y.; Yi, C. F., Growth and approximation of Dirichlet series of infinite order, Advances in Mathematics, 42, 1, 81-88, (2013) · Zbl 1299.30003
[25] Yu, J. R., The convergence of two-tuple Dirichet series and two-tuple laplace transform, Wuhan University Journal of Natural Sciences, 1, 1-16, (1962)
[26] Liu, J.; Gao, Z. S., Growth of double Dirichlet series, Acta Mathematica Scientia. Series A. Shuxue Wuli Xuebao. Chinese Edition, 29, 4, 958-968, (2009) · Zbl 1212.30006
[27] Gao, G. N., The growth of double Dirichlet series, Basic Sciences Journal of Textile Universities, 24, 368-372, (2011)
[28] Liang, M., On order and type of multiple Dirichlet series, Acta Mathematica Scientia B, 35, 3, 703-708, (2015) · Zbl 1340.32003
[29] Liang, M.; Gao, Z., On the convergence and growth of multiple Dirichlet series, Mathematical Notes, 88, 732-740, (2010) · Zbl 1244.30004
[30] Liang, M.; Gao, Z., Convergence and growth of multiple Dirichlet series, Acta Mathematica Scientia B, 30, 5, 1640-1648, (2010) · Zbl 1240.30016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.