×

Existence test for solution of nonlinear systems applying affine arithmetic. (English) Zbl 1117.65075

Given a continuous differentiable function \(f: \mathbb{R}^m\to\mathbb{R}^m\) and an \(m\)-dimensional interval vector \(X\) criteria are derived for verifying the existence of a zero \(x^*\in X\) of \(f\). Moreover, subsets of \(X\) can be given which do not contain a zero of \(f\). The criteria are based on affine arithmetic and Brouwer’s fixed point theorem. A new test for existence and uniqueness of a zero of \(f\) is listed, many references for additional tests are given. Two numerical examples compare some of them with the new one showing that the latter succeeds in a shorter time than the other ones.

MSC:

65H10 Numerical computation of solutions to systems of equations
65G30 Interval and finite arithmetic
65G20 Algorithms with automatic result verification
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. Alefeld, Inclusion methods for systems of nonlinear equations—the interval Newton method and modifications, Proceedings of the IMACS-GAMM International Workshop on Validated Computation, Topics in Validated Computations, Elsevier, Amsterdam, 1994, pp. 7-26.; G. Alefeld, Inclusion methods for systems of nonlinear equations—the interval Newton method and modifications, Proceedings of the IMACS-GAMM International Workshop on Validated Computation, Topics in Validated Computations, Elsevier, Amsterdam, 1994, pp. 7-26. · Zbl 0822.65029
[2] Alefeld, G.; Platzöder, L., A quadratically convergent Krawczyk-like algorithm, SIAM J. Numer. Anal., 20, 1, 210-219 (1983) · Zbl 0505.65012
[3] Alefeld, G.; Potra, F., A new class of interval methods with higher order of convergence, Computing, 42, 69-80 (1989) · Zbl 0675.65041
[4] de Figueiredo, L. H.; Stolfi, J., Self-Validated Numerical Methods and Applications (1997), Brazilian Mathematics Colloquium Monograph, IMPA, Rio de Janeiro: Brazilian Mathematics Colloquium Monograph, IMPA, Rio de Janeiro Brazil
[5] Hansen, E.; Sengupta, S., Bounding solutions of systems of equations using interval analysis, BIT, 21, 203-211 (1981) · Zbl 0455.65037
[6] T. Kikuchi, M. Kashiwagi, Elimination of non-existence regions of the solution of nonlinear equations using affine arithmetic, Proc. NOLTA2001, 2001, 4-B-2.; T. Kikuchi, M. Kashiwagi, Elimination of non-existence regions of the solution of nonlinear equations using affine arithmetic, Proc. NOLTA2001, 2001, 4-B-2.
[7] Kolev, L. V., A new method for global solution of systems of non-linear equations, Reliable Comput., 4, 125-146 (1998) · Zbl 1005.65047
[8] Kolev, L. V., An efficient interval method for global analysis of non-linear resistive circuits, Int. J. Circ. Theor. Appl., 26, 81-92 (1998) · Zbl 0905.94036
[9] Kolev, L., An interval method for global nonlinear analysis, IEEE Circuits and Systems I: Fund. Theor. Appl., 47, 675-683 (2000) · Zbl 1050.65503
[10] Kolev, L. V., An improved interval linearization for solving nonlinear problems, Numer. Algorithms, 37, 213-224 (2004) · Zbl 1074.65058
[11] L.V. Kolev, V.M. Mladenov, A linear programming implementation of a interval method for global non-linear DC analysis, Proceedings of ICECS ’98, vol. 1, 1988, pp. 75-78.; L.V. Kolev, V.M. Mladenov, A linear programming implementation of a interval method for global non-linear DC analysis, Proceedings of ICECS ’98, vol. 1, 1988, pp. 75-78.
[12] Krawczyk, R., Interval operators of a function of which the Lipschitz matrix is an interval M-matrix, Computing, 31, 245-253 (1983) · Zbl 0506.65018
[13] Li, Q., Order interval test and iterative method for nonlinear systems, J. Comput. Math., 1, 50-55 (1984) · Zbl 0573.65032
[14] Moore, R. E., A test for existence of solutions to nonlinear systems, SIAM J. Numer. Anal., 14, 4, 611-615 (1977) · Zbl 0365.65034
[15] Moore, R. E., Methods and Applications of Interval Analysis, (SIAM Studies in Applied Mathematics, vol. 2 (1979), SIAM: SIAM Philadelphia) · Zbl 0302.65047
[16] Moore, R. E.; Jones, S. T., Safe starting regions for iterative methods, SIAM J. Numer. Anal., 14, 6, 1051-1065 (1977) · Zbl 0371.65009
[17] Moore, R. E.; Qi, L., A successive interval test for nonlinear systems, SIAM J. Numer. Anal., 19, 4, 845-850 (1982) · Zbl 0497.65027
[18] Qi, L., A note on the Moore test for nonlinear systems, SIAM J. Numer. Anal., 19, 4, 851-857 (1982) · Zbl 0506.65020
[19] Schwandt, H., Krawczyk-like algorithms for the solution of systems of nonlinear equations, SIAM J. Numer. Anal., 22, 4, 792-810 (1985) · Zbl 0579.65049
[20] Schwandt, H., Accelerating Krawczyk-like interval algorithms for the solution of nonlinear systems of equations by using second derivatives, Computing, 35, 355-367 (1985) · Zbl 0576.65042
[21] Shearer, J. M.; Wolfe, M. A., Some computable existence, uniqueness, and convergence tests for nonlinear systems, SIAM J. Numer. Anal., 22, 6, 1200-1207 (1985) · Zbl 0584.65026
[22] Shearer, J. M.; Wolfe, M. A., An improved form of the Krawczyk-Moore algorithm, Appl. Math. Comput., 17, 229-239 (1985) · Zbl 0584.65027
[23] Sunaga, T., Theory of an interval algebra and its application to numerical analysis, RAAG MEMOIRS, 2, 29-46 (1958) · Zbl 0176.13201
[24] Wolfe, M. A., A modification of Krawczyk’s algorithm, SIAM J. Numer. Anal., 17, 3, 376-379 (1980) · Zbl 0444.65029
[25] Xiaojun, C.; Deren, W., On the optimal properties of the Krawczyk-type interval operator, Internat. J. Comput. Math., 29, 235-245 (1989) · Zbl 0675.65042
[26] Yamamura, K.; Fujioka, T., Finding all solution of nonlinear equations using the dual simplex method, J. Comput. Appl. Math., 152, 587-595 (2003) · Zbl 1018.65069
[27] Yamamura, K.; Kawata, H.; Tokue, A., Interval solution of nonlinear equations using linear programming, BIT, 38, 186-199 (1998) · Zbl 0908.65038
[28] K. Yamamura, A. Machida, An interval algorithm for finding all solutions of nonlinear equations, Proceedings of SCAN 2004, 2004, p. 120.; K. Yamamura, A. Machida, An interval algorithm for finding all solutions of nonlinear equations, Proceedings of SCAN 2004, 2004, p. 120. · Zbl 1191.94169
[29] Yamamura, K.; Tanaka, S., Finding all solutions of systems of nonlinear equations using the dual simplex method, BIT, 42, 214-230 (2002) · Zbl 0997.65080
[30] You, Z.; Chen, X., Interval iterative methods under partial ordering (1), J. Comput. Math., 6, 39-47 (1988) · Zbl 0639.65029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.