×

Late time evolution of unforced inviscid two-dimensional turbulence. (English) Zbl 1183.76785

Summary: We propose a new unified model for the small, intermediate and large-scale evolution of freely decaying two-dimensional turbulence in the inviscid limit. The new model’s centerpiece is a recent theory of vortex self-similarity [D. G. Dritschel et al., Phys. Rev. Lett. 101, No. 094501 (2008)], applicable to the intermediate range of scales spanned by an expanding population of vortices. This range is predicted to have a steep \(k^{-5}\) energy spectrum. At small scales, this gives way to G. K. Batchelor [Phys. Fluids 12, Suppl. II, 233–239 (1969; Zbl 0217.25801)] \(k^{-3}\) energy spectrum, corresponding to the (forward) enstrophy (mean square vorticity) cascade or, physically, to thinning filamentary debris produced by vortex collisions. This small-scale range carries with it nearly all of the enstrophy but negligible energy. At large scales, the slow growth of the maximum vortex size \((\sim t^{1/6}\) in radius) implies a correspondingly slow inverse energy cascade. We argue that this exceedingly slow growth allows the large scales to approach equipartition, ultimately leading to a \(k^{1}\) energy spectrum there. Put together, our proposed model has an energy spectrum \(\mathcal E (k,t) \propto t^{1/3} k^1\) at large scales, together with \(\mathcal E (k,t) \propto t^{-2/3} k^{-5}\) over the vortex population, and finally \(\mathcal E (k,t) \propto t^{-1}k^{-3}\) over an exponentially widening small-scale range dominated by incoherent filamentary debris. Support for our model is provided in two parts. First, we address the evolution of large and ultra-large scales (much greater than any vortex) using a novel high-resolution vortex-in-cell simulation. This verifies equipartition, but more importantly allows us to better understand the approach to equipartition. Second, we address the intermediate and small scales by an ensemble of especially high-resolution direct numerical simulations.

MSC:

76F99 Turbulence

Citations:

Zbl 0217.25801
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1063/1.858647 · Zbl 0776.76042 · doi:10.1063/1.858647
[2] DOI: 10.1063/1.869933 · Zbl 1147.76365 · doi:10.1063/1.869933
[3] DOI: 10.1017/S0022112073000686 · Zbl 0266.76039 · doi:10.1017/S0022112073000686
[4] DOI: 10.1016/S0370-1573(01)00064-3 · Zbl 1001.76041 · doi:10.1016/S0370-1573(01)00064-3
[5] DOI: 10.1063/1.869169 · doi:10.1063/1.869169
[6] DOI: 10.1175/1520-0469(1971)028&lt;1087:GT&gt;2.0.CO;2 · doi:10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
[7] DOI: 10.1103/PhysRevE.61.6644 · doi:10.1103/PhysRevE.61.6644
[8] DOI: 10.1103/PhysRevLett.66.2735 · doi:10.1103/PhysRevLett.66.2735
[9] DOI: 10.1017/S0022112091003038 · Zbl 0850.76025 · doi:10.1017/S0022112091003038
[10] DOI: 10.1063/1.1290391 · Zbl 1184.76069 · doi:10.1063/1.1290391
[11] DOI: 10.1007/BF01053743 · Zbl 0935.76530 · doi:10.1007/BF01053743
[12] DOI: 10.1088/0305-4470/21/5/018 · doi:10.1088/0305-4470/21/5/018
[13] Ossai, J. Turbul. 2 pp 172– (2001)
[14] DOI: 10.1063/1.858254 · Zbl 0775.76077 · doi:10.1063/1.858254
[15] DOI: 10.1017/S0022112070000642 · Zbl 0191.25601 · doi:10.1017/S0022112070000642
[16] DOI: 10.1063/1.1692443 · Zbl 0217.25801 · doi:10.1063/1.1692443
[17] DOI: 10.1007/BF02780991 · doi:10.1007/BF02780991
[18] DOI: 10.1017/S002211209600835X · Zbl 0892.76030 · doi:10.1017/S002211209600835X
[19] DOI: 10.1063/1.1694856 · doi:10.1063/1.1694856
[20] DOI: 10.1103/PhysRevLett.65.2137 · Zbl 1050.82553 · doi:10.1103/PhysRevLett.65.2137
[21] DOI: 10.1017/S0022112084001750 · Zbl 0561.76059 · doi:10.1017/S0022112084001750
[22] DOI: 10.1016/j.euromechflu.2004.09.003 · Zbl 1126.76331 · doi:10.1016/j.euromechflu.2004.09.003
[23] DOI: 10.1007/978-1-4020-6435-7 · doi:10.1007/978-1-4020-6435-7
[24] DOI: 10.1103/PhysRevE.63.065301 · doi:10.1103/PhysRevE.63.065301
[25] DOI: 10.1063/1.1762301 · doi:10.1063/1.1762301
[26] DOI: 10.1017/S0022377800007686 · doi:10.1017/S0022377800007686
[27] DOI: 10.1063/1.1694310 · Zbl 0261.76038 · doi:10.1063/1.1694310
[28] DOI: 10.1016/j.jcp.2009.05.025 · Zbl 1261.86002 · doi:10.1016/j.jcp.2009.05.025
[29] DOI: 10.1103/RevModPhys.78.87 · Zbl 1205.01032 · doi:10.1103/RevModPhys.78.87
[30] DOI: 10.1007/BF01053597 · Zbl 0945.82568 · doi:10.1007/BF01053597
[31] DOI: 10.1063/1.868896 · Zbl 1086.76035 · doi:10.1063/1.868896
[32] DOI: 10.1017/S0022112007008427 · Zbl 1169.76351 · doi:10.1017/S0022112007008427
[33] DOI: 10.1103/PhysRevLett.101.094501 · doi:10.1103/PhysRevLett.101.094501
[34] DOI: 10.1016/j.jcp.2009.01.015 · Zbl 1159.76031 · doi:10.1016/j.jcp.2009.01.015
[35] DOI: 10.1002/qj.49712354015 · doi:10.1002/qj.49712354015
[36] DOI: 10.1017/S0022112007005733 · Zbl 1165.76341 · doi:10.1017/S0022112007005733
[37] Davidson, Turbulence: An Introduction for Scientists and Engineers. (2004) · Zbl 1061.76001
[38] DOI: 10.1063/1.2424496 · Zbl 1146.76555 · doi:10.1063/1.2424496
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.