×

Proposal of control laws for turbulent skin friction reduction based on resolvent analysis. (English) Zbl 1415.76401

Summary: This paper evaluates and modifies the so-called suboptimal control technique for turbulent skin friction reduction through a combination of low-order modelling and direct numerical simulation (DNS). In a previous study, S. Nakashima et al. [“Assessment of suboptimal control for turbulent skin friction reduction via resolvent analysis”, ibid. 828, 496–526 (2017; doi:10.1017/jfm.2017.519)] employed resolvent analysis to show that the efficacy of suboptimal control was mixed across spectral space when the streamwise wall shear stress (case ST) was used as a sensor signal, i.e. specific regions of spectral space showed drag increment. This observation suggests that drag reduction may be attained if control is applied selectively in spectral space. DNS results presented in the present study, however, do not show a significant effect on the flow with selective control. A posteriori analyses attribute this lack of efficacy to a much lower actuation amplitude in the simulations compared to model assumptions. Building on these observations, resolvent analysis is used to design and provide a preliminary assessment of modified control laws that also rely on sensing the streamwise wall shear stress. Control performance is then assessed by means of DNS. The proposed control laws generate as much as 10% drag reduction, and these results are broadly consistent with resolvent-based predictions. The physical mechanisms leading to drag reduction are assessed via conditional sampling. It is shown that the new control laws effectively suppress the near-wall quasi-streamwise vortices. A physically intuitive explanation is proposed based on a separate evaluation of clockwise and anticlockwise vortices.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76F70 Control of turbulent flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] del Álamo, J. C. & Jiménez, J.2003Spectra of very large anisotropic scales in turbulent channels. Phys. Fluids15, 41-44.10.1063/1.1570830 · Zbl 1186.76136 · doi:10.1063/1.1570830
[2] Choi, H., Moin, P. & Kim, J.1994Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech.262, 75-110.10.1017/S0022112094000431S0022112094000431 · Zbl 0800.76191 · doi:10.1017/S0022112094000431
[3] Choi, J.-I. & Sung, H. J.2002Assessment of suboptimal control for drag reduction in turbulent channel flow. J. Turbul.3 (29), 1-17.10.1088/1468-5248/3/1/029 · doi:10.1088/1468-5248/3/1/029
[4] Chung, Y. M. & Talha, T.2011Effectiveness of active flow control for turbulent skin friction drag reduction. Phys. Fluids23, 025102.10.1063/1.3553278 · doi:10.1063/1.3553278
[5] Deng, B.-Q., Xu, C.-X., Huang, W.-X. & Cui, G.-X.2014Strengthened opposition control for skin-friction reduction in wall-bounded turbulent flows. J. Turbul.15 (2), 122-143.10.1080/14685248.2013.877144 · doi:10.1080/14685248.2013.877144
[6] Deng, B.-Q., Huang, W.-X. & Xu, C.-X.2016Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at Re_𝜏 = 1000. J. Turbul.17, 758-786.10.1080/14685248.2016.1181266 · doi:10.1080/14685248.2016.1181266
[7] Fukagata, K., Iwamoto, K. & Kasagi, N.2002Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids14, L73-L76.10.1063/1.1516779 · Zbl 1185.76134 · doi:10.1063/1.1516779
[8] Fukagata, K. & Kasagi, N.2004Suboptimal control for drag reduction via suppression of near-wall Reynolds shear stress. Intl J. Heat Fluid Flow25, 341-350.10.1016/j.ijheatfluidflow.2004.02.015 · doi:10.1016/j.ijheatfluidflow.2004.02.015
[9] Fukagata, K., Kasagi, N. & Koumoutsakos, P.2006A theoretical prediction of friction drag reduction in turbulent channel flow by superhydrophobic surface. Phys. Fluids18, 051703.
[10] Fukagata, K., Kobayashi, M. & Kasagi, N.2010On the friction drag reduction effect by a control of large-scale turbulent structures. J. Fluid Sci. Technol.5, 574-584.10.1299/jfst.5.574 · doi:10.1299/jfst.5.574
[11] Hamilton, J. M., Kim, J. & Waleffe, F.1995Regeneration mechanism of near-wall turbulence structures. J. Fluid Mech.287, 317-348.10.1017/S0022112095000978 · Zbl 0867.76032 · doi:10.1017/S0022112095000978
[12] Hasegawa, Y. & Kasagi, N.2011Dissimilar control of momentum and heat transfer in a fully developed turbulent channel flow. J. Fluid Mech.683, 57-93.10.1017/jfm.2011.248S0022112011002485 · Zbl 1241.76304 · doi:10.1017/jfm.2011.248
[13] Hœpffner, J. & Fukagata, K.2009Pumping or drag reduction?J. Fluid Mech.635, 171-187.10.1017/S0022112009007629S0022112009007629 · Zbl 1183.76703 · doi:10.1017/S0022112009007629
[14] Hoyas, S. & Jiménez, J.2006Scaling of the velocity fluctuation in turbulent channels up to Re_𝜏 = 2003. Phys. Fluids18, 011702.10.1063/1.2162185 · doi:10.1063/1.2162185
[15] Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, streams and convergence zones in turbulent flows. Summer program, Center for Turbulence Research, NASA Ames/Stanford University, pp. 193-208.
[16] Iwamoto, K., Suzuki, Y. & Kasagi, N.2002Reynolds number effect on wall turbulence: toward effective feedback control. Intl J. Heat Fluid Flow23, 678-689.10.1016/S0142-727X(02)00164-9 · doi:10.1016/S0142-727X(02)00164-9
[17] Jeong, J., Hussain, F., Schoppa, W. & Kim, J.1997Coherent structure near the wall in a turbulent channel flow. J. Fluid Mech.332, 185-214.10.1017/S0022112096003965 · Zbl 0892.76036 · doi:10.1017/S0022112096003965
[18] Jung, W., Mangiavacchi, N. & Akhavan, R.1992Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids4, 1605-1607.10.1063/1.858381 · doi:10.1063/1.858381
[19] Kasagi, N., Suzuki, T. & Fukagata, K.2009Microelectromechanical systems-based feedback control of turbulence skin friction reduction. Annu. Rev. Fluid Mech.41, 231-251.10.1146/annurev.fluid.010908.165221 · Zbl 1157.76022 · doi:10.1146/annurev.fluid.010908.165221
[20] Kajishima, T. & Taira, K.2017Computational Fluid Dynamics. Springer.10.1007/978-3-319-45304-0 · Zbl 1354.65002 · doi:10.1007/978-3-319-45304-0
[21] Kim, J. & Lim, J.2000A linear process in wall-bounded turbulent shear flows. Phys. Fluids12, 1885-1888.10.1063/1.870437 · Zbl 1184.76284 · doi:10.1063/1.870437
[22] Kim, J., Moin, P. & Moser, R.1987Turbulence statistics in fully developed turbulent flow at low Reynolds number. J. Fluid Mech.177, 133-166.10.1017/S0022112087000892 · Zbl 0616.76071 · doi:10.1017/S0022112087000892
[23] Kline, S. J., Reynolds, W. C., Schraub, F. A. & Rundstadler, P. W.1967The structure of turbulent boundary layers. J. Fluid Mech.30, 741-773.10.1017/S0022112067001740S0022112067001740 · Zbl 1461.76274 · doi:10.1017/S0022112067001740
[24] Koumoutsakos, P.1999Vorticity flux control for a turbulent channel flow. Phys. Fluids11, 248-250.10.1063/1.869874 · Zbl 1147.76436 · doi:10.1063/1.869874
[25] Lee, C., Kim, J. & Choi, H.1998Suboptimal control of turbulent channel flow for drag reduction. J. Fluid Mech.358, 245-258.10.1017/S002211209700815XS002211209700815X · Zbl 0907.76039 · doi:10.1017/S002211209700815X
[26] Lee, J.2015Opposition control of turbulent wall-bounded flow using upstream sensor. J. Mech. Sci. Technol.29, 4729-4735.10.1007/s12206-015-1020-2 · doi:10.1007/s12206-015-1020-2
[27] Luhar, M., Sharma, A. S. & McKeon, B. J.2014Opposition control within the resolvent analysis framework. J. Fluid Mech.749, 597-626.10.1017/jfm.2014.209S0022112014002092 · doi:10.1017/jfm.2014.209
[28] Luhar, M., Sharma, A. S. & Mckeon, B. J.2015A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech.768, 415-441.10.1017/jfm.2015.85S0022112015000853 · doi:10.1017/jfm.2015.85
[29] Luhar, M., Sharma, A. S. & Mckeon, B. J.2016On the design of optimal compliant walls for turbulence control. J. Turbul.17, 787-806.10.1080/14685248.2016.1181267 · doi:10.1080/14685248.2016.1181267
[30] Mamori, H., Iwamoto, K. & Murata, A.2014Effect of the parameters of traveling waves created by blowing and suction on the relaminarization phenomena in fully developed turbulent channel flow. Phys. Fluids26, 015101.
[31] McKeon, B. J. & Sharma, A. S.2010A critical-layer framework for turbulent pipe flow. J. Fluid Mech.658, 336-382.10.1017/S002211201000176XS002211201000176X · Zbl 1205.76138 · doi:10.1017/S002211201000176X
[32] McKeon, B. J., Jacobi, I. & Sharma, A. S.2013Experimental manipulation of wall turbulence: a systems approach. Phys. Fluids25, 031301.10.1063/1.4793444 · doi:10.1063/1.4793444
[33] McKeon, B. J.2017The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech.817, P1-P86.10.1017/jfm.2017.115 · Zbl 1383.76239 · doi:10.1017/jfm.2017.115
[34] Min, T., Kang, S. M., Speyer, J. L. & Kim, J.2006Sustained sub-laminar drag in a fully developed channel flow. J. Fluid Mech.558, 309-318.10.1017/S0022112006000206S0022112006000206 · Zbl 1094.76033 · doi:10.1017/S0022112006000206
[35] Moarref, R., Sharma, A. S., Tropp, J. A. & McKeon, B. J.2013Model-based scaling and prediction of the streamwise energy intensity in high-Reynolds number turbulent channels. J. Fluid Mech.734, 275-316.10.1017/jfm.2013.457 · Zbl 1294.76181 · doi:10.1017/jfm.2013.457
[36] Moser, R., Kim, J. & Mansour, N.1999Direct numerical simulation of turbulent channel flow up to Re_𝜏 = 590. Phys. Fluids11, 943-945.10.1063/1.869966 · Zbl 1147.76463 · doi:10.1063/1.869966
[37] Morimoto, K., Iwamoto, K., Suzuki, Y. & Kasagi, N.2002Genetic algorithm-based optimization of feed back control scheme for wall turbulence. In Proc. 3rd Symp. Smart Control of Turbulence, Tokyo, pp. 107-113.
[38] Nakanishi, R., Mamori, H. & Fukagata, K.2012Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Intl J. Heat Fluid Flow35, 152-159.10.1016/j.ijheatfluidflow.2012.01.007 · doi:10.1016/j.ijheatfluidflow.2012.01.007
[39] Nakashima, S., Fukagata, K. & Luhar, M.2017Assessment of suboptimal control for turbulent skin friction reduction via resolvent analysis. J. Fluid Mech.828, 496-526.10.1017/jfm.2017.519S0022112017005195 · Zbl 1460.76571 · doi:10.1017/jfm.2017.519
[40] Nakashima, S., Luhar, M. & Fukagata, K.2019Reconsideration of spanwise rotating turbulent channel flows via resolvent analysis. J. Fluid Mech.861, 200-222.10.1017/jfm.2018.894S0022112018008947 · Zbl 1415.76734 · doi:10.1017/jfm.2018.894
[41] Quadrio, M., Ricco, P. & Viotti, C.2009Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech.627, 161-178.10.1017/S0022112009006077S0022112009006077 · Zbl 1171.76405 · doi:10.1017/S0022112009006077
[42] Rebbeck, H. & Choi, K.-S.2001Opposition control of near-wall turbulence with a piston-type actuator. Phys. Fluids13, 2142-2145.10.1063/1.1381563 · Zbl 1184.76447 · doi:10.1063/1.1381563
[43] Rebbeck, H. & Choi, K.-S.2006A wind-tunnel experiment on real-time opposition control of turbulence. Phys. Fluids18, 035103.10.1063/1.2173295 · doi:10.1063/1.2173295
[44] Robinson, S. K.1991Coherent motions in turbulent boundary layer. Annu. Rev. Fluid Mech.23, 601-639.10.1146/annurev.fl.23.010191.003125 · doi:10.1146/annurev.fl.23.010191.003125
[45] Sharma, A. S. & McKeon, B. J.2013On coherent structure in wall turbulence. J. Fluid Mech.728, 196-238.10.1017/jfm.2013.286S0022112013002863 · Zbl 1291.76173 · doi:10.1017/jfm.2013.286
[46] Smits, A. J., McKeon, B. J. & Marusic, I.2011High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech.43, 353-375.10.1146/annurev-fluid-122109-160753 · Zbl 1299.76002 · doi:10.1146/annurev-fluid-122109-160753
[47] Viotti, C., Quadrio, M. & Luchini, P.2009Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction. Phys. Fluids21, 115109.10.1063/1.3266945 · Zbl 1183.76547 · doi:10.1063/1.3266945
[48] Waleffe, F.1997On a self-sustaining process in shear flows. Phys. Fluids9, 883-900.10.1063/1.869185 · doi:10.1063/1.869185
[49] Walsh, M. J.1983Riblets as a viscous drag reduction technique. AIAA J.21, 485-486.10.2514/3.60126 · doi:10.2514/3.60126
[50] White, C. M. & Mungal, M. G.2008Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech.40, 235-256.10.1146/annurev.fluid.40.111406.102156 · Zbl 1229.76043 · doi:10.1146/annurev.fluid.40.111406.102156
[51] Yoshino, T., Suzuki, Y. & Kasagi, N.2008Drag reduction of turbulence air channel flow with distributed micro sensors and actuators. J. Fluid Sci. Technol.3, 137-148.10.1299/jfst.3.137 · doi:10.1299/jfst.3.137
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.