×

Numerical methods with controlled dissipation for small-scale dependent shocks. (English) Zbl 1398.65211

Summary: We provide a ‘user guide’ to the literature of the past twenty years concerning the modelling and approximation of discontinuous solutions to nonlinear hyperbolic systems that admit small-scale dependent shock waves. We cover several classes of problems and solutions: nonclassical undercompressive shocks, hyperbolic systems in nonconservative form, and boundary layer problems. We review the relevant models arising in continuum physics and describe the numerical methods that have been proposed to capture small-scale dependent solutions. In agreement with general well-posedness theory, small-scale dependent solutions are characterized by a kinetic relation, a family of paths, or an admissible boundary set. We provide a review of numerical methods (front-tracking schemes, finite difference schemes, finite volume schemes), which, at the discrete level, reproduce the effect of the physically meaningful dissipation mechanisms of interest in the applications. An essential role is played by the equivalent equation associated with discrete schemes, which is found to be relevant even for solutions containing shock waves.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L60 First-order nonlinear hyperbolic equations
35L65 Hyperbolic conservation laws
35L67 Shocks and singularities for hyperbolic equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abeyaratne, R.; Knowles, J. K., Kinetic relations and the propagation of phase boundaries in solids, Arch. Ration. Mech. Anal., 114, 119-154, (1991) · Zbl 0745.73001 · doi:10.1007/BF00375400
[2] Abeyaratne, R.; Knowles, J. K., Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids, SIAM J. Appl. Math., 51, 1205-1221, (1991) · Zbl 0764.73013 · doi:10.1137/0151061
[3] Abgrall, R.; Karni, S., A comment on the computation of nonconservative products, J. Comput. Phys., 45, 382-403, (2010)
[4] Abgrall, R.; Karni, S., High-order unstructured Lagrangian one-step WENO finite volume schemes for nonconservative hyperbolic systems: applications to compressible multi-phase flows, Comput. Fluids, 86, 405-432, (2013) · Zbl 1290.76081 · doi:10.1016/j.compfluid.2013.07.024
[5] Adimurthi; Mishra, S.; Gowda, G. D., Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyperbolic Differ. Equ., 2, 783-837, (2005) · Zbl 1093.35045 · doi:10.1142/S0219891605000622
[6] Amadori, D., Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA: Nonlinear Differ. Equ. Appl., 4, 1-42, (1997) · Zbl 0868.35069 · doi:10.1007/PL00001406
[7] Amadori, D.; Colombo, R. M., Continuous dependence for 2 × 2 conservation laws with boundary, J. Differ. Equ., 138, 229-266, (1997) · Zbl 0884.35091 · doi:10.1006/jdeq.1997.3274
[8] Amadori, D.; Baiti, P.; Lefloch, P. G.; Piccoli, B., Nonclassical shocks and the Cauchy problem for nonconvex conservation laws, J. Differ. Equ., 151, 345-372, (1999) · Zbl 0921.35107 · doi:10.1006/jdeq.1998.3513
[9] Ancona, F.; Bianchini, S.; Monaco, R., WASCOM 2005: 13th Conference on Waves and Stability in Continuous Media, Vanishing viscosity solutions of hyperbolic systems of conservation laws with boundary, 13-21, (2006), World Scientific · Zbl 1345.35060
[10] Ancona, F.; Marson, A., Scalar non-linear conservation laws with integrable boundary data, Nonlinear Anal., 35, 687-710, (1999) · Zbl 0919.35081 · doi:10.1016/S0362-546X(97)00697-4
[11] Antonelli, P.; Marcati, P., On the finite energy weak solutions to a system in quantum fluid dynamics, Comm. Math. Phys., 287, 657-686, (2009) · Zbl 1177.82127 · doi:10.1007/s00220-008-0632-0
[12] Arvanitis, C.; Makridakis, C.; Sfakianakis, N. I., Entropy conservative schemes and adaptive mesh selection for hyperbolic conservation laws, J. Hyperbolic Differ. Equ., 7, 383-404, (2010) · Zbl 1204.65118 · doi:10.1142/S0219891610002177
[13] Audebert, B.; Coquel, F., Numerical Mathematics and Advanced Applications: Proc. ENUMATH 2005, Hybrid Godunov-Glimm method for a nonconservative hyperbolic system with kinetic relations, 646-653, (2006), Springer · Zbl 1388.76197 · doi:10.1007/978-3-540-34288-5_62
[14] Bachmann, F.; Vovelle, J., Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients, Comm. Partial Differ. Equ., 31, 371-395, (2006) · Zbl 1102.35064 · doi:10.1080/03605300500358095
[15] Baiti, P.; Lefloch, P. G.; Piccoli, B., Nonlinear Partial Differential Equations, Vol. 238 of Contemporary Mathematics, Nonclassical shocks and the Cauchy problem: General conservation laws, 1-25, (1999), AMS · Zbl 0942.35112
[16] Baiti, P.; Lefloch, P. G.; Piccoli, B.; Fiedler, B.; Gröger, K.; Sprekels, J., EQUADIFF 99: Proc. International Conference on Differential Equations, BV stability via generalized characteristics for nonclassical solutions of conservation laws, 289-294, (2000), World Scientific · doi:10.1142/9789812792617_0058
[17] Baiti, P.; Lefloch, P. G.; Piccoli, B., Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems, J. Differ. Equ., 172, 59-82, (2001) · Zbl 0987.35101 · doi:10.1006/jdeq.2000.3869
[18] Baiti, P.; Lefloch, P. G.; Piccoli, B., Existence theory for nonclassical entropy solutions: scalar conservation laws, Z. Angew. Math. Phys., 55, 927-945, (2004) · Zbl 1082.35103 · doi:10.1007/s00033-004-2055-x
[19] Bank, M.; Ben-Artzi, M., Scalar conservation laws on a half-line: A parabolic approach, J. Hyperbolic Differ. Equ., 7, 165-189, (2010) · Zbl 1211.35180 · doi:10.1142/S0219891610002086
[20] Bardos, C. W.; Le Roux, A.-Y.; Nedelec, J.-C., First order quasilinear equations with boundary conditions, Comm. Part. Diff. Equ., 4, 1018-1034, (1979) · Zbl 0418.35024
[21] Bedjaoui, N.; Lefloch, P. G., Diffusive-dispersive traveling waves and kinetic relations I: non-convex hyperbolic conservation laws, J. Differ. Equ., 178, 574-607, (2002) · Zbl 1001.35082 · doi:10.1006/jdeq.2000.4009
[22] Bedjaoui, N.; Lefloch, P. G., Diffusive-dispersive traveling waves and kinetic relations II: A hyperbolic-elliptic model of phase transitions dynamics, Proc. Royal Soc. Edinburgh A, 132, 545-565, (2002) · Zbl 1082.35104 · doi:10.1017/S0308210500001773
[23] Bedjaoui, N.; Lefloch, P. G., Diffusive-dispersive traveling waves and kinetic relations III: an hyperbolic model from nonlinear elastodynamics, Ann. Univ. Ferrara Sc. Mat., 47, 117-144, (2002) · Zbl 1119.35340
[24] Bedjaoui, N.; Lefloch, P. G., Diffusive-dispersive traveling waves and kinetic relations IV: compressible Euler system, Chinese Ann. Appl. Math., 24, 17-34, (2003) · Zbl 1033.35074 · doi:10.1142/S0252959903000037
[25] Bedjaoui, N.; Lefloch, P. G., Diffusive-dispersive traveling waves and kinetic relations V: singular diffusion and dispersion terms, Proc. Royal Soc. Edinburgh A, 134, 815-844, (2004) · Zbl 1065.35182 · doi:10.1017/S0308210500003504
[26] Bedjaoui, N.; Chalons, C.; Coquel, F.; Lefloch, P. G., Non-monotonic traveling waves in van der Waals fluids, Anal. Appl., 3, 419-446, (2005) · Zbl 1083.35060 · doi:10.1142/S0219530505000649
[27] Beljadid, A.; Lefloch, P. G.; Mishra, S.; Parés, C., (2014)
[28] Benabdallah, A., Le p-systeme dans un intervalle, CR Acad. Sci. Paris, 303, 123-126, (1986) · Zbl 0607.35061
[29] Benzoni-Gavage, S., Stability of subsonic planar phase boundaries in a van der Waals fluid, Arch. Ration. Mech. Anal., 150, 23-55, (1999) · Zbl 0980.76023 · doi:10.1007/s002050050179
[30] Beretta, E.; Hulshof, J.; Peletier, L. A., On an ordinary differential equation from forced coating flow, J. Differ. Equ., 130, 247-265, (1996) · Zbl 0919.34020 · doi:10.1006/jdeq.1996.0141
[31] Berthon, C., Nonlinear scheme for approximating a nonconservative hyperbolic system, CR Acad. Sci. Paris, 335, 1069-1072, (2002) · Zbl 1018.65107 · doi:10.1016/S1631-073X(02)02615-8
[32] Berthon, C.; Coquel, F., Finite Volumes for Complex Applications II: Problems and Perspectives, Nonlinear projection methods for multi-entropies Navier-Stokes systems, 307-314, (1999), Hermes Science Publications · Zbl 1052.76556
[33] Berthon, C.; Coquel, F., Innovative Methods for Numerical Solutions of Partial Differential Equations, Nonlinear projection methods for multi-entropies Navier-Stokes systems, 278-304, (2002), World Scientific · Zbl 1078.76573
[34] Berthon, C.; Coquel, F., Multiple solutions for compressible turbulent flow models, Commun. Math. Sci., 4, 497-511, (2006) · Zbl 1109.35073 · doi:10.4310/CMS.2006.v4.n3.a2
[35] Berthon, C.; Coquel, F., Nonlinear projection methods for multi-entropies Navier-Stokes systems, Math. Comp., 76, 1163-1194, (2007) · Zbl 1110.76035 · doi:10.1090/S0025-5718-07-01948-5
[36] Berthon, C.; Foucher, F., Efficient well-balanced hydrostatic upwind schemes for shallow-water equations, J. Comput. Phys., 231, 4993-5015, (2012) · Zbl 1351.76095 · doi:10.1016/j.jcp.2012.02.031
[37] Berthon, C.; Coquel, F.; Lefloch, P. G., (2002)
[38] Berthon, C.; Coquel, F.; Lefloch, P. G., Why many theories of shock waves are necessary: kinetic relations for nonconservative systems, Proc. Royal Soc. Edinburgh, 137, 1-37, (2012) · Zbl 1234.35190
[39] Bertozzi, A.; Shearer, M., Existence of undercompressive traveling waves in thin film equations, SIAM J. Math. Anal., 32, 194-213, (2000) · Zbl 0959.35122 · doi:10.1137/S0036141099350894
[40] Bertozzi, A.; Muönch, A.; Shearer, M., Undercompressive shocks in thin film flow, Phys. D, 134, 431-464, (2000) · Zbl 1076.76509
[41] Bertozzi, A.; Mönch, A.; Shearer, M.; Zumbrun, K., Stability of compressive and undercompressive thin film traveling waves, Europ. J. Appl. Math., 12, 253-291, (2001) · Zbl 1028.76012
[42] Bianchini, S.; Spinolo, L. V., The boundary Riemann solver coming from the real vanishing viscosity approximation, Arch. Ration. Mech. Anal., 191, 1-96, (2009) · Zbl 1171.35072 · doi:10.1007/s00205-008-0177-6
[43] Böhme, T.; Dreyer, W.; Möller, W. H., Determination of stiffness and higher gradient coefficients by means of the embedded-atom method, Contin. Mech. Thermodyn., 18, 411-441, (2007) · Zbl 1160.74399 · doi:10.1007/s00161-006-0037-2
[44] Bouchut, F.; Boyaval, S., A new model for shallow viscoelastic fluids, Math. Models Meth. Appl. Sci., 23, 1479-1526, (2013) · Zbl 1383.76031 · doi:10.1142/S0218202513500140
[45] Bouchut, F.; Klingenberg, C.; Waagan, K., A multiwave approximate Riemann solver for ideal MHD based on relaxation I: theoretical framework, Numer. Math., 108, 7-42, (2007) · Zbl 1126.76034 · doi:10.1007/s00211-007-0108-8
[46] Boutin, B.; Chalons, C.; Lagoutière, F.; Lefloch, P. G., Convergent and conservative schemes for nonclassical solutions based on kinetic relations, Interfaces Free Bound., 10, 399-421, (2008) · Zbl 1157.65435
[47] Boutin, B.; Coquel, F.; Lefloch, P. G., Coupling techniques for nonlinear hyperbolic equations I: self-similar diffusion for thin interfaces, Proc. Roy. Soc. Edinburgh A, 141, 921-956, (2011) · Zbl 1252.35188 · doi:10.1017/S0308210510001459
[48] Boutin, B.; Coquel, F.; Lefloch, P. G., Math. Comp., Coupling techniques for nonlinear hyperbolic equations IV: Well-balanced schemes for scalar multidimensional and multi-component laws, (2012)
[49] Boutin, B.; Coquel, F.; Lefloch, P. G., Coupling techniques for nonlinear hyperbolic equations III: the well-balanced approximation of thick interfaces, SIAM J. Numer. Anal., 51, 1108-1133, (2013) · Zbl 1371.35172 · doi:10.1137/120865768
[50] Bressan, A.; Constantin, A., Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5, 1-27, (2007) · Zbl 1139.35378 · doi:10.1142/S0219530507000857
[51] Brio, M.; Hunter, J. K., Rotationally invariant hyperbolic waves, Comm. Pure Appl. Math., 43, 1037-1053, (1990) · Zbl 0726.35079 · doi:10.1002/cpa.3160430806
[52] Burger, R.; Karlsen, K. H., Conservation laws with discontinuous flux: A short introduction, J. Engng Math., 60, 241-247, (2008) · Zbl 1138.35365 · doi:10.1007/s10665-008-9213-7
[53] Caginalp, G.; Chen, X., Convergence of the phase field model to its sharp interface limits, Europ. J. Appl. Math., 9, 417-445, (1998) · Zbl 0930.35024 · doi:10.1017/S0956792598003520
[54] Carbou, G.; Hanouzet, B., Relaxation approximation of some initial-boundary value problem for p-systems, Commun. Math. Sci., 5, 187-203, (2007) · Zbl 1157.35005 · doi:10.4310/CMS.2007.v5.n1.a8
[55] Castro, M. J.; Fjordholm, U. S.; Mishra, S.; Parés, C., Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems, SIAM J. Numer. Anal., 51, 1371-1391, (2013) · Zbl 1317.65167 · doi:10.1137/110845379
[56] Castro, M. J.; Gallardoand, J. M.; Parés, C., High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products: applications to shallow-water systems, Math. Comp., 75, 1103-1134, (2006) · Zbl 1096.65082 · doi:10.1090/S0025-5718-06-01851-5
[57] Castro, M. J.; Lefloch, P. G.; Muñoz-Ruiz, M. L.; Parés, C., Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes, J. Comput. Phys., 227, 8107-8129, (2008) · Zbl 1176.76084 · doi:10.1016/j.jcp.2008.05.012
[58] Castro, M. J.; Macías, J.; Parés, C., A Q-scheme for a class of systems of coupled conservation laws with source term: application to a two-layer 1-D shallow water system, M2AN: Math. Model. Numer. Anal., 35, 107-127, (2001) · Zbl 1094.76046 · doi:10.1051/m2an:2001108
[59] Castro, M. J.; Parés, C.; Puppo, G.; Russo, G., Central schemes for nonconservative hyperbolic systems, SIAM J. Sci. Comput. B, 34, 523-558, (2012) · Zbl 1255.76080 · doi:10.1137/110828873
[60] Chalons, C., Transport-equilibrium schemes for computing nonclassical shocks: scalar conservation laws, Numer. Methods Partial Differ. Equ., 24, 1127-1147, (2008) · Zbl 1145.65054 · doi:10.1002/num.20309
[61] Chalons, C.; Coquel, F., Analysis and Simulation ofFluid Dynamics, Numerical capture of shock solutions of nonconservative hyperbolic systems via kinetic functions, 45-68, (2007), Birkhöauser · Zbl 1291.35125
[62] Chalons, C.; Goatin, P., Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling, Interfaces Free Bound., 10, 197-221, (2008) · Zbl 1171.35429
[63] Chalons, C.; Lefloch, P. G., High-order entropy conservative schemes and kinetic relations for van der Waals fluids, J. Comput. Phys., 167, 1-23, (2001) · Zbl 1014.76036 · doi:10.1006/jcph.2000.6669
[64] Chalons, C.; Lefloch, P. G., A fully discrete scheme for diffusive-dispersive conservation laws, Numer. Math., 89, 493-509, (2001) · Zbl 1013.65096 · doi:10.1007/PL00005476
[65] Chalons, C.; Lefloch, P. G., Computing undercompressive waves with the random choice scheme: nonclassical shock waves, Interfaces Free Bound., 5, 129-158, (2003) · Zbl 1038.35134
[66] Chalons, C.; Coquel, F.; Engel, P.; Rohde, C., Fast relaxation solvers for hyperbolic-elliptic phase transition problems, SIAM J. Sci. Comput. A, 34, 1753-1776, (2012) · Zbl 1387.80009 · doi:10.1137/110848815
[67] Chalons, C.; Raviart, P.-A.; Seguin, N., The interface coupling of the gas dynamics equations, Quart. Appl. Math., 66, 659-705, (2008) · Zbl 1157.76039
[68] Charlotte, M.; Truskinovsky, L., Towards multi-scale continuum elasticity theory, Contin. Mech. Thermodyn., 20, 133-161, (2008) · Zbl 1172.74006 · doi:10.1007/s00161-008-0075-z
[69] Christoforou, C.; Spinolo, L. V., A uniqueness criterion for viscous limits of boundary Riemann problems, J. Hyperbolic Differ. Equ., 8, 507-544, (2011) · Zbl 1252.35195 · doi:10.1142/S0219891611002482
[70] Coclite, G. M.; Karlsen, K. H., A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation, Comm. Partial Differ. Equ., 31, 1253-1272, (2006) · Zbl 1102.35010 · doi:10.1080/03605300600781600
[71] Colombo, R. M.; Corli, A., Continuous dependence in conservation laws with phase transitions, SIAM J. Math. Anal., 31, 34-62, (1999) · Zbl 0977.35085 · doi:10.1137/S0036141097331871
[72] Colombo, R. M.; Corli, A., Stability of the Riemann semigroup with respect to the kinetic condition, Quart. Appl. Math., 62, 541-551, (2004) · Zbl 1071.35082
[73] Colombo, R. M.; Corli, A., Sonic and kinetic phase transitions with applications to Chapman-jouguet deflagration, Math. Methods Appl. Sci., 27, 843-864, (2004) · Zbl 1047.35096 · doi:10.1002/mma.474
[74] Colombo, R. M.; Goatin, P.; Piccoli, B., Road networks with phase transitions, J. Hyperbolic Differ. Equ., 7, 85-106, (2010) · Zbl 1189.35176 · doi:10.1142/S0219891610002025
[75] Colombo, R.; Kröoner, D.; Lefloch, P. G., Oberwolfach Reports, Mini-workshop: Hyperbolic aspects of phase transition dynamics. Abstracts from the mini-workshop held February 24-March 1, 2008, 513-556, (2008), European Mathematical Society · Zbl 1177.35008
[76] Coquel, F.; Diehl, D.; Merkle, C.; Rohde, C., Numerical Methods for Hyperbolic and Kinetic Problems, Vol. 7 of IRMA Lectures in Mathematics and Theoretical Physics, Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows, 239-270, (2005), European Mathematical Society · Zbl 1210.80016
[77] Corli, A.; Sablé-Tougeron, M., Stability of contact discontinuities under perturbations of bounded variation, Rend. Sem. Mat. Univ. Padova, 97, 35-60, (1997) · Zbl 0893.35070
[78] Corli, A.; Sablé-Tougeron, M., Perturbations of bounded variation of a strong shock wave, J. Differ. Equ., 138, 195-228, (1997) · Zbl 0881.35071 · doi:10.1006/jdeq.1997.3276
[79] Corli, A.; Sablé-Tougeron, M., Kinetic stabilization of a nonlinear sonic phase boundary, Arch. Ration. Mech. Anal., 152, 1-63, (2000) · Zbl 0947.00050 · doi:10.1007/s002050050001
[80] Dafermos, C. M., Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38, 33-41, (1972) · Zbl 0233.35014 · doi:10.1016/0022-247X(72)90114-X
[81] Dafermos, C. M.; Ball, J. M., Proc. Systems of Nonlinear Partial Differential Equations’, Hyperbolic systems of conservation laws, 25-70, (1983), Springer
[82] Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, Vol. 325 of Grundlehren der mathematischen Wissenschaft, (2000), Springer · Zbl 0940.35002
[83] Dal, G.; Lefloch, P. G.; Murat, F., (1990)
[84] Dal Maso, G.; Lefloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483-548, (1995) · Zbl 0853.35068
[85] De, C.; Otto, F.; Westdickenberg, M., Minimal entropy conditions for Burgers equation, Quart. Appl. Math., 62, 687-700, (2004) · Zbl 1211.35184
[86] Donadello, C.; Marson, A., Stability of front tracking solutions to the initial and boundary value problem for systems of conservation laws, NoDEA: Nonlinear Differ. Equ. Appl., 14, 569-592, (2007) · Zbl 1145.35085 · doi:10.1007/s00030-007-5010-7
[87] Dreyer, W.; Herrmann, M., Numerical experiments on the modulation theory for the nonlinear atomic chain, Phys. D, 237, 255-282, (2008) · Zbl 1142.82027 · doi:10.1016/j.physd.2007.09.003
[88] Dreyer, W.; Kunik, M., Maximum entropy principle revisited, Contin. Mech. Thermodyn., 10, 331-347, (1998) · Zbl 0951.76085 · doi:10.1007/s001610050097
[89] Dubois, F.; Lefloch, P. G., Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differ. Equ., 71, 93-122, (1988) · Zbl 0649.35057 · doi:10.1016/0022-0396(88)90040-X
[90] Dutta, R., Personal communication, (2013), University of Oslo, Norway
[91] E, W.; Li, D., The Andersen thermostat in molecular dynamics, Comm. Pure Appl. Math., 61, 96-136, (2008) · Zbl 1148.82019 · doi:10.1002/cpa.20198
[92] Ernest, J.; Lefloch, P. G.; Mishra, S., Schemes with well-controlled dissipation (WCD), (2013)
[93] Fan, H. T.; Liu, H.-L., Pattern formation, wave propagation and stability in conservation laws with slow diffusion and fast reaction, J. Differ. Hyper. Equ., 1, 605-636, (2004) · Zbl 1065.35156 · doi:10.1142/S0219891604000275
[94] Fan, H.-T.; Slemrod, M.; Dunn, J. E., Shock Induced Transitions and Phase Structures in General Media, The Riemann problem for systems of conservation laws of mixed type, 61-91, (1993), Springer
[95] Fjordholm, U. S.; Mishra, S., Accurate numerical discretizations of nonconservative hyperbolic systems, M2AN: Math. Model. Numer. Anal., 46, 187-296, (2012) · Zbl 1272.65064 · doi:10.1051/m2an/2011044
[96] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Foundations of Computational Mathematics 2008, Vol. 363 of London Mathematical Society Lecture Notes, Energy preserving and energy stable schemes for the shallow water equations, 93-139, (2009), Cambridge University Press · Zbl 1381.76236
[97] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, J. Comput. Phys., 230, 5587-5609, (2011) · Zbl 1452.35149 · doi:10.1016/j.jcp.2011.03.042
[98] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Arbitrary order accurate essentially non-oscillatory entropy stable schemes for systems of conservation laws, SIAM J. Numer. Anal., 50, 544-573, (2012) · Zbl 1252.65150 · doi:10.1137/110836961
[99] Fjordholm, U. S.; Mishra, S.; Tadmor, E., ENO reconstruction and ENO interpolation are stable, J. Found. Comp. Math., 13, 139-159, (2013) · Zbl 1273.65120 · doi:10.1007/s10208-012-9117-9
[100] Freistuöhler, H., Dynamical stability and vanishing viscosity: A case study of a non-strictly hyperbolic system of conservation laws, Comm. Pure Appl. Math., 45, 561-582, (1992) · Zbl 0785.35063 · doi:10.1002/cpa.3160450503
[101] Freistuöhler, H.; Pitman, E. B., A numerical study of a rotationally degenerate hyperbolic system I: the Riemann problem, J. Comput. Phys., 100, 306-321, (1992) · Zbl 0757.65096 · doi:10.1016/0021-9991(92)90238-T
[102] Freistuöhler, H.; Pitman, E. B., A numerical study of a rotationally degenerate hyperbolic system II: the Cauchy problem, SIAM J. Numer. Anal., 32, 741-753, (1995) · Zbl 0838.35074 · doi:10.1137/0732034
[103] Frid, H.; Liu, I.-S., Fourth Workshop on Partial Differential Equations, part I, Vol. 11 of Matemática Contemporânea, Phase transitions and oscillation waves in an elastic bar, 123-135, (1996)
[104] Gisclon, M., Étude des conditions aux limites pour un systéme strictement hyperbolique, via l’approximation parabolique, J. Math. Pures Appl., 9, 485-508, (1996) · Zbl 0869.35061
[105] Gisclon, M.; Serre, D., Étude des conditions aux limites pour un systéme strictement hyperbolique, via l’approximation parabolique, CR Acad. Sci. Paris, 319, 377-382, (1994) · Zbl 0808.35075
[106] Goatin, P.; Lefloch, P. G., Sharp L1 continuous dependence of solutions of bounded variation for hyperbolic systems of conservation laws, Arch. Ration. Mech. Anal., 157, 35-73, (2001) · Zbl 0980.35099 · doi:10.1007/s002050100129
[107] Godlewski, E.; Raviart, P.-A., The numerical interface coupling of nonlinear hyperbolic systems of conservation laws I: the scalar case, Numer. Math., 97, 81-130, (2004) · Zbl 1063.65080 · doi:10.1007/s00211-002-0438-5
[108] Godlewski, E.; Le Thanh, K.-C.; Raviart, P.-A., The numerical interface coupling of nonlinear hyperbolic systems of conservation laws II: the case of systems, M2AN: Math. Model. Numer. Anal., 39, 649-692, (2005) · Zbl 1095.65084 · doi:10.1051/m2an:2005029
[109] Goodman, J., (1982), Stanford University
[110] Grinfeld, M., Nonisothermal dynamic phase transitions, Quart. Appl. Math., 47, 71-84, (1989) · Zbl 0672.76005
[111] Hattori, H., The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion: isothermal case, Arch. Ration. Mech. Anal., 92, 247-263, (1986) · Zbl 0673.76084
[112] Hattori, H., The existence and large time behavior of solutions to a system related to a phase transition problem, SIAM J. Math. Anal., 34, 774-804, (2003) · Zbl 1039.35020 · doi:10.1137/S0036141001391378
[113] Hattori, H., Existence of solutions with moving phase boundaries in ther-moelasticity, J. Hyperbolic Differ. Equ., 5, 589-611, (2008) · Zbl 1178.35247 · doi:10.1142/S0219891608001611
[114] Hayes, B. T.; Lefloch, P. G., Nonclassical shock waves and kinetic relations: Strictly hyperbolic systems, (1996), Ecole Polytechnique, Palaiseau, France
[115] Hayes, B. T.; Lefloch, P. G., Nonclassical shocks and kinetic relations: scalar conservation laws, Arch. Ration. Mech. Anal., 139, 1-56, (1997) · Zbl 0902.76053 · doi:10.1007/s002050050046
[116] Hayes, B. T.; Lefloch, P. G., Nonclassical shocks and kinetic relations: finite difference schemes, SIAM J. Numer. Anal., 35, 2169-2194, (1998) · Zbl 0938.35096 · doi:10.1137/S0036142997315998
[117] Hayes, B. T.; Lefloch, P. G., Nonclassical shock waves and kinetic relations: strictly hyperbolic systems, SIAM J. Math. Anal., 31, 941-991, (2000) · Zbl 0953.35095 · doi:10.1137/S0036141097319826
[118] Hayes, B. T.; Shearer, M., Undercompressive shocks and Riemann problems for scalar conservation laws with non-convex fluxes, Proc. Roy. Soc. Edinburgh A, 129, 733-754, (1999) · Zbl 0939.35121 · doi:10.1017/S0308210500013111
[119] Hiltebrand, A.; Mishra, S., Entropy stable shock capturing streamline diffusion space-time discontinuous Galerkin (DG) methods for systems of conservation laws, Numer. Math., 126, 103-151, (2014) · Zbl 1303.65083 · doi:10.1007/s00211-013-0558-0
[120] Holden, H.; Karlsen, K. H.; Mitrovic, D.; Panov, E. Y., Strong compactness of approximate solutions to degenerate elliptic-hyperbolic equations with discontinuous flux function, Acta Math. Sci. B, 29, 1573-1612, (2009) · Zbl 1212.35166 · doi:10.1016/S0252-9602(10)60004-5
[121] Holden, H.; Risebro, N.; Sande, H., The solution of the Cauchy problem with large data for a model of a mixture of gases, J. Hyperbolic Differ. Equ., 6, 25-106, (2009) · Zbl 1178.35248 · doi:10.1142/S0219891609001757
[122] Hou, T. Y.; Lefloch, P. G., Why nonconservative schemes converge to wrong solutions: error analysis, Math. Comp., 62, 497-530, (1994) · Zbl 0809.65102 · doi:10.1090/S0025-5718-1994-1201068-0
[123] Hou, T. Y.; Rosakis, P.; Lefloch, P. G., A level set approach to the computation of twinning and phase transition dynamics, J. Comput. Phys., 150, 302-331, (1999) · Zbl 0936.74052 · doi:10.1006/jcph.1998.6179
[124] Hu, J.; Lefloch, P. G., L1 continuous dependence property for systems of conservation laws, Arch. Ration. Mech. Anal., 151, 45-93, (2000) · Zbl 1021.35064 · doi:10.1007/s002050050193
[125] Hwang, S., Kinetic decomposition for the generalized BBM-Burgers equations with dissipative term, Proc. Roy. Soc. Edinburgh A, 134, 1149-1162, (2004) · Zbl 1064.35114 · doi:10.1017/S030821050000367X
[126] Hwang, S., Singular limit problem of the Camassa-Holm type equation, J. Differ. Equ., 235, 74-84, (2007) · Zbl 1387.35526 · doi:10.1016/j.jde.2006.12.011
[127] Hwang, S.; Tzavaras, A., Kinetic decomposition of approximate solutions to conservation laws: application to relaxation and diffusion-dispersion approximations, Comm. Partial Differ. Equ., 27, 1229-1254, (2002) · Zbl 1020.35054 · doi:10.1081/PDE-120004900
[128] Iguchi, T.; Lefloch, P. G., Existence theory for hyperbolic systems of conservation laws with general flux-functions, Arch. Ration. Mech. Anal., 168, 165-244, (2003) · Zbl 1036.35130 · doi:10.1007/s00205-003-0254-9
[129] Isaacson, E.; Marchesin, D.; Palmeira, C. F.; Plohr, B. J., A global formalism for nonlinear waves in conservation laws, Comm. Math. Phys., 146, 505-552, (1992) · Zbl 0786.76048 · doi:10.1007/BF02097015
[130] Ismail, F.; Roe, P. L., Affordable, entropy-consistent Euler flux functions II: entropy production at shocks, J. Comput. Phys., 228, 5410-5436, (2009) · Zbl 1280.76015 · doi:10.1016/j.jcp.2009.04.021
[131] Jacobs, D.; Mckinney, W. R.; Shearer, M., Traveling wave solutions ofthe modified Korteweg-de Vries Burgers equation, J. Differ. Equ., 116, 448-467, (1995) · Zbl 0820.35118 · doi:10.1006/jdeq.1995.1043
[132] Jerome, J. W., Large-Scale Matrix Problems and the Numerical Solution of Partial Differential Equations, Vol. 3 of Advances in Numerical Analysis, The mathematical study and approximation of semiconductor models, 157-204, (1994), Oxford University Press
[133] Joseph, K. T.; Lefloch, P. G., Boundary layers in weak solutions to hyperbolic conservation laws, (1996), Ecole Polytechnique, France
[134] Joseph, K. T.; Lefloch, P. G., Boundary layers in weak solutions to hyperbolic conservation laws, Arch. Ration. Mech Anal., 147, 47-88, (1999) · Zbl 0959.35119 · doi:10.1007/s002050050145
[135] Joseph, K. T.; Lefloch, P. G., Boundary layers in weak solutions of hyperbolic conservation laws II: self-similar vanishing diffusion limits, Commun. Pure Appl. Anal., 1, 51-76, (2002) · Zbl 1020.35055
[136] Joseph, K. T.; Lefloch, P. G.; Rozanova, O., New Analytical Approach to Multidimensional Balance Laws, Singular limits for the Riemann problem: General diffusion, relaxation, and boundary conditions, 143-172, (2006)
[137] Joseph, K. T.; Lefloch, P. G., Singular limits in phase dynamics with physical viscosity and capillarity, Proc. Royal Soc. Edinburgh A, 137, 1287-1312, (2007) · Zbl 1134.35073
[138] Joseph, K. T.; Lefloch, P. G., Singular limits for the Riemann problem: general diffusion, relaxation, and boundary conditions, CR Math. Acad. Sci. Paris, 344, 59-64, (2007) · Zbl 1109.65074 · doi:10.1016/j.crma.2006.11.015
[139] Karlsen, K. H.; Lie, K.; Risebro, N. H., Hyperbolic Problems: Theory, Numerics, Applications I, Vol. 129 of International Series of Numerical Mathematics, A front tracking method for conservation laws with boundary conditions, 493-502, (1999), Birkhöauser · Zbl 0928.35098
[140] Karni, S., Viscous shock profiles and primitive formulations, SIAM J. Numer. Anal., 29, 1592-1609, (1992) · Zbl 0764.76032 · doi:10.1137/0729092
[141] Kissling, F.; Rohde, C., The computation of nonclassical shock waves with a heterogeneous multiscale method, Netw. Heterog. Media, 5, 661-674, (2010) · Zbl 1270.35312 · doi:10.3934/nhm.2010.5.661
[142] Kissling, F.; Lefloch, P. G.; Rohde, C., Singular limits and kinetic decomposition for a non-local diffusion-dispersion problem, J. Differ. Equ., 247, 3338-3356, (2009) · Zbl 1180.35349 · doi:10.1016/j.jde.2009.05.006
[143] Kondo, C.; Lefloch, P. G., Zero diffusion-dispersion limits for hyperbolic conservation laws, SIAM Math. Anal., 33, 1320-1329, (2002) · Zbl 1055.35072 · doi:10.1137/S0036141000374269
[144] Kröoner, D.; Lefloch, P. G.; Thanh, M. D., The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section, M2AN: Math. Model. Numer. Anal., 42, 425-442, (2008) · Zbl 1139.76048 · doi:10.1051/m2an:2008011
[145] Kruzkov, S. N., First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81, 228, (1970)
[146] Kumar, H.; Mishra, S., Entropy stable numerical schemes for two-fluid MHD equations, J. Sci. Comput., 52, 401-425, (2012) · Zbl 1311.76150 · doi:10.1007/s10915-011-9554-7
[147] Kwon, Y.-S., Diffusion-dispersion limits for multidimensional scalar conservation laws with source terms, J. Differ. Equ., 246, 1883-1893, (2009) · Zbl 1194.35260 · doi:10.1016/j.jde.2008.11.022
[148] Laforest, M.; Lefloch, P. G., Diminishing functionals for nonclassical entropy solutions selected by kinetic relations, Port. Math., 67, 279-319, (2010) · Zbl 1207.35219
[149] Laforest, M.; Lefloch, P. G., (2014)
[150] Lax, P. D., Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10, 537-566, (1957) · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[151] Lax, P. D., Hyperbolic Systems ofConservation Laws and the Mathematical Theory of Shock Waves, Vol.11 of Regional Confer. Series in Appl. Math., (1973)
[152] Lax, P. D.; Levermore, C. D., The small dispersion limit of the Korteweg-de Vries equation, Comm. Pure Appl. Math., 36, 253-290, (1983) · Zbl 0532.35067 · doi:10.1002/cpa.3160360302
[153] Lax, P. D.; Wendroff, B., Systems of conservation laws, Comm. Pure Appl. Math., 13, 217-237, (1960) · Zbl 0152.44802 · doi:10.1002/cpa.3160130205
[154] Lax, P. D.; Wendroff, B., On the stability of difference schemes, Comm. Pure Appl. Math., 15, 363-371, (1962) · Zbl 0113.32301 · doi:10.1002/cpa.3160150401
[155] Lefloch, P. G., Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form, Comm. Part. Diff. Equ., 13, 669-727, (1988) · Zbl 0683.35049 · doi:10.1080/03605308808820557
[156] Lefloch, P. G., Shock waves for nonlinear hyperbolic systems in nonconservative form, (1989)
[157] Lefloch, P. G., Nonlinear Evolution Equations That Change Type, Vol. 27 of IMA Volumes in Mathematics and its Applications, An existence and uniqueness result for two nonstrictly hyperbolic systems, 126-138, (1990), Springer
[158] Lefloch, P. G., Propagating phase boundaries: formulation of the problem and existence via the glimm scheme, Arch. Ration. Mech. Anal., 123, 153-197, (1993) · Zbl 0784.73010 · doi:10.1007/BF00695275
[159] Lefloch, P. G.; Kroöner, D.; Ohlberger, M.; Rohde, C., An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, An introduction to nonclassical shocks of systems of conservation laws, 28-72, (1999), Springer
[160] Lefloch, P. G., Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock, (2002), Birkhäuser · Zbl 1019.35001
[161] Lefloch, P. G., Graph solutions of nonlinear hyperbolic systems, J. Hyperbolic Differ. Equ., 1, 643-689, (2004) · Zbl 1071.35078 · doi:10.1142/S0219891604000287
[162] Lefloch, P. G., Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena, Vol. 526 of Contemporary Mathematics,, Kinetic relations for undercompressive shock waves: Physical, mathematical, and numerical issues, 237-272, (2010), AMS · Zbl 1221.35235
[163] Lefloch, P. G.; Liu, T.-P., Existence theory for nonlinear hyperbolic systems in nonconservative form, Forum Math., 5, 261-280, (1993) · Zbl 0804.35086
[164] Lefloch, P. G.; Mishra, S., Nonclassical shocks and numerical kinetic relations for a model MHD system, Act. Math. Sci., 29, 1684-1702, (2009) · Zbl 1212.35301 · doi:10.1016/S0252-9602(10)60011-2
[165] Lefloch, P. G.; Mohamadian, M., Why many shock wave theories are necessary: fourth-order models, kinetic functions, and equivalent equations, J. Comput. Phys., 227, 4162-4189, (2008) · Zbl 1264.76055 · doi:10.1016/j.jcp.2007.12.026
[166] Lefloch, P. G.; Natalini, R., Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Analysis, 36, 213-230, (1999) · Zbl 0923.35159
[167] Lefloch, P. G.; Rohde, C., High-order schemes, entropy inequalities, and nonclassical shocks, SIAM J. Numer. Anal., 37, 2023-2060, (2000) · Zbl 0959.35117 · doi:10.1137/S0036142998345256
[168] Lefloch, P. G.; Shearer, M., Nonclassical Riemann solvers with nucleation, Proc. Royal Soc. Edinburgh A, 134, 941-964, (2004) · Zbl 1090.35121
[169] Lefloch, P. G.; Thanh, M. D., Nonclassical Riemann solvers and kinetic relations III: A nonconvex hyperbolic model for van der Waals fluids, Electr. J. Differ. Equ., 72, 1-19, (2000) · Zbl 0962.35121
[170] Lefloch, P. G.; Thanh, M. D., Nonclassical Riemann solvers and kinetic relations I: A nonconvex hyperbolic model of phase transitions, Z. Angew. Math. Phys., 52, 597-619, (2001) · Zbl 1020.35056 · doi:10.1007/PL00001563
[171] Lefloch, P. G.; Thanh, M. D., Nonclassical Riemann solvers and kinetic relations II: an hyperbolic-elliptic model of phase transitions, Proc. Royal Soc. Edinburgh A, 132, 181-219, (2001)
[172] Lefloch, P. G.; Thanh, M. D., Properties of rankine-hugoniot curves for van der Waals fluids, Japan J. Indust. Applied Math., 20, 211-238, (2003) · Zbl 1044.76029 · doi:10.1007/BF03170427
[173] Lefloch, P. G.; Thanh, M. D., The Riemann problem for the shallow water equations with discontinuous topography, Commun. Math. Sci., 5, 865-885, (2007) · Zbl 1145.35082 · doi:10.4310/CMS.2007.v5.n4.a7
[174] Lefloch, P. G.; Thanh, M. D., A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime, J. Comput. Phys., 230, 7631-7660, (2011) · Zbl 1453.35150 · doi:10.1016/j.jcp.2011.06.017
[175] Lefloch, P. G.; Mercier, J.-M.; Rohde, C., Fully discrete entropy conservative schemes of arbitrary order, SIAM J. Numer. Anal., 40, 1968-1992, (2002) · Zbl 1033.65073 · doi:10.1137/S003614290240069X
[176] Le, A.-Y., Étude du probleme mixte pour une equation quasi-lineaire du premier ordre, CR Acad. Sci. Paris A/B, 285, 351-354, (1977) · Zbl 0366.35019
[177] Leveque, R. J., Finite Volume Methods for Hyperbolic Problems, (2003), Cambridge University Press
[178] Levy, R.; Shearer, M., Comparison of two dynamic contact line models for driven thin liquid films, Europ. J. Appl. Math., 15, 625-642, (2004) · Zbl 1160.76315 · doi:10.1017/S0956792504005741
[179] Levy, R.; Shearer, M., Kinetics and nucleation for driven thin film flow, Phys. D, 209, 145-163, (2005) · Zbl 1142.76335 · doi:10.1016/j.physd.2005.07.003
[180] Li, H.-L.; Pan, R.-H., Zero relaxation limit for piecewise smooth solutions to a rate-type viscoelastic system in the presence of shocks, J. Math. Anal. Appl., 252, 298-324, (2000) · Zbl 0972.35067 · doi:10.1006/jmaa.2000.7005
[181] Mercier, J.-M.; Piccoli, B., Global continuous Riemann solver for nonlinear elasticity, Arch. Ration. Mech. Anal., 156, 89-119, (2001) · Zbl 1028.74040 · doi:10.1007/s002050100118
[182] Mercier, J.-M.; Piccoli, B., Admissible Riemann solvers for genuinely nonlinear p-systems of mixed type, J. Differ. Equ., 180, 395-426, (2002) · Zbl 1005.35062 · doi:10.1006/jdeq.2001.4066
[183] Merkle, C.; Rohde, C., Computation of dynamical phase transitions in solids, Appl. Numer. Math., 56, 1450-1463, (2006) · Zbl 1116.74049 · doi:10.1016/j.apnum.2006.03.025
[184] Merkle, C.; Rohde, C., The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques, M2AN: Math. Model. Numer. Anal., 41, 1089-1123, (2007) · Zbl 1134.35074 · doi:10.1051/m2an:2007048
[185] Mishra, S.; Spinolo, V., (2011)
[186] Morando, A.; Secchi, P., Regularity of weakly well posed hyperbolic mixed problems with characteristic boundary, J. Hyperbolic Differ. Equ., 8, 37-99, (2011) · Zbl 1228.35135 · doi:10.1142/S021989161100238X
[187] Morin, A.; Flatten, T.; Munkejord, S. T., A roe scheme for a compressible six-equation two-fluid model, Internat. J. Numer. Methods Fluids, 72, 478-504, (2013) · doi:10.1002/fld.3752
[188] Münch, A., Shock transitions in Marangoni gravity-driven thin-film flow, Nonlinearity, 13, 731-746, (2000) · Zbl 0964.76009 · doi:10.1088/0951-7715/13/3/312
[189] Muñoz, M. L.; Parés, C., Godunov method for nonconservative hyperbolic systems, Math. Model. Numer. Anal., 41, 169-185, (2007) · Zbl 1124.65077 · doi:10.1051/m2an:2007011
[190] Murillo, J.; García-Navarro, P., Energy balance numerical schemes for shallow water equations with discontinuous topography, J. Comput. Phys., 236, 119-142, (2013) · doi:10.1016/j.jcp.2012.11.003
[191] Ngan, S.-C.; Truskinovsky, L., Thermo-elastic aspects of dynamic nucleation, J. Mech. Phys. Solids, 50, 1193-1229, (2002) · Zbl 1022.74034 · doi:10.1016/S0022-5096(01)00127-2
[192] Oleinik, O., Discontinuous solutions of nonlinear differential equations, Trans. Amer. Math. Soc., 26, 95-172, (1963) · Zbl 0131.31803
[193] Otto, F.; Westdickenberg, M., Convergence of thin film approximation for a scalar conservation law, J. Hyperbolic Differ. Equ., 2, 183-199, (2005) · Zbl 1082.35107 · doi:10.1142/S0219891605000427
[194] Parés, C., Numerical methods for nonconservative hyperbolic systems: A theoretical framework, SIAM J. Numer. Anal., 44, 300-321, (2006) · Zbl 1130.65089 · doi:10.1137/050628052
[195] Rütz, A.; Voigt, A., A diffuse-interface approximation for surface diffusion including adatoms, Nonlinearity, 20, 177-192, (2007) · Zbl 1117.35315 · doi:10.1088/0951-7715/20/1/011
[196] Rohde, C., Scalar conservation laws with mixed local and non-local diffusion-dispersion terms, SIAM J. Math. Anal., 37, 103-129, (2005) · Zbl 1098.35103 · doi:10.1137/S0036141004443300
[197] Rohde, C., On local and non-local Navier-Stokes-Korteweg systems for liquid-vapour phase transitions, Z. Angew. Math. Mech., 85, 839-857, (2005) · Zbl 1099.76072 · doi:10.1002/zamm.200410211
[198] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425-467, (1999) · Zbl 0937.76053 · doi:10.1006/jcph.1999.6187
[199] Schecter, S.; Shearer, M., Undercompressive shocks for nonstrictly hyperbolic conservation laws, Dynamics Diff. Equ., 3, 199-271, (1991) · Zbl 0772.35032 · doi:10.1007/BF01047709
[200] Schonbek, M. E., Convergence of solutions to nonlinear dispersive equations, Comm. Part. Diff. Equ., 7, 959-1000, (1982) · Zbl 0496.35058 · doi:10.1080/03605308208820242
[201] Schulze, S.; Shearer, M., Undercompressive shocks for a system of hyperbolic conservation laws with cubic nonlinearity, J. Math. Anal. Appl., 229, 344-362, (1999) · Zbl 0930.35106 · doi:10.1006/jmaa.1998.6186
[202] Seguin, N.; Vovelle, J., Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients, Math. Models Methods Appl. Sci., 13, 221-257, (2003) · Zbl 1078.35011 · doi:10.1142/S0218202503002477
[203] Serre, D., Systems of Conservation Laws 2: Geometric Structures, Oscillations, and Initial and Boundary Value Problems, (2000), Cambridge University Press
[204] Serre, D., Hyperbolic Systems of Balance Laws, Vol. 1911 of Lecture Notes in Mathematics, Discrete shock profiles: Existence and stability, 79-158, (2007), Springer · Zbl 1128.65068
[205] Shearer, M., The Riemann problem for the planar motion of an elastic string, J. Differ. Equ., 61, 149-163, (1986) · Zbl 0629.35073 · doi:10.1016/0022-0396(86)90116-6
[206] Shearer, M., Dynamic phase transitions in a van der Waals gas, Quart. Appl. Math., 46, 631-636, (1998) · Zbl 0688.35066
[207] Shearer, M.; Yang, Y., The Riemann problem for a system of conservation laws of mixed type with a cubic nonlinearity, Proc. Roy. Soc. Edinburgh A, 125, 675-699, (1995) · Zbl 0843.35064 · doi:10.1017/S0308210500030298
[208] Slemrod, M., Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. Ration. Mech. Anal., 81, 301-315, (1983) · Zbl 0505.76082
[209] Slemrod, M., A limiting viscosity approach to the Riemann problem for materials exhibiting change of phase, Arch. Ration. Mech. Anal., 105, 327-365, (1989) · Zbl 0701.35101 · doi:10.1007/BF00281495
[210] Suliciu, I., On modelling phase transitions by means of rate-type constitutive equations, shock wave structure, Internat. J. Engng Sci., 28, 829-841, (1990) · Zbl 0738.73007 · doi:10.1016/0020-7225(90)90028-H
[211] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws I, Math. Comp., 49, 91-103, (1987) · Zbl 0641.65068 · doi:10.1090/S0025-5718-1987-0890255-3
[212] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12, 451-512, (2003) · Zbl 1046.65078 · doi:10.1017/S0962492902000156
[213] Tadmor, E.; Zhong, W., Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity, J. Hyperbolic Differ. Equ., 3, 529-559, (2006) · Zbl 1331.76102 · doi:10.1142/S0219891606000896
[214] Thanh, M. D.; Krüner, D., Numerical treatment of nonconservative terms in resonant regime for fluid flows in a nozzle with variable cross-section, Comput. Fluids, 66, 130-139, (2012) · Zbl 1365.76200 · doi:10.1016/j.compfluid.2012.06.021
[215] Truskinovsky, L., Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium, J. Appl. Math. Mech. (PMM), 51, 777-784, (1987) · Zbl 0679.73059 · doi:10.1016/0021-8928(87)90140-7
[216] Truskinovsky, L.; Fosdick, R.; Dunn, E.; Slemrod, M., Shock Induced Transitions and Phase Structures in General Media, Kinks versus shocks, 185-229, (1993), Springer
[217] Truskinovsky, L., Transition to detonation in dynamic phase changes, Arch. Ration. Mech. Anal., 125, 375-397, (1994) · Zbl 0813.73009 · doi:10.1007/BF00375063
[218] Truskinovsky, L.; Vainchtein, A., Quasicontinuum models of dynamic phase transitions, Contin. Mech. Thermodyn., 18, 1-21, (2006) · Zbl 1101.74049 · doi:10.1007/s00161-006-0018-5
[219] Van Duijn, C. J.; Peletier, L. A.; Pop, I. S., A new class of entropy solutions of the Buckley-Leverett equation, SIAM J. Math. Anal., 39, 507-536, (2007) · Zbl 1149.35054 · doi:10.1137/05064518X
[220] Volpert, A. I., The space BV and quasi-linear equations, Mat. USSR Sb., 2, 225-267, (1967) · Zbl 0168.07402 · doi:10.1070/SM1967v002n02ABEH002340
[221] Wendroff, B., The Riemann problem for materials with non-convex equations of state I: isentropic flow, J. Math. Anal. Appl., 38, 454-466, (1972) · Zbl 0264.76054 · doi:10.1016/0022-247X(72)90103-5
[222] Zhong, X.-G.; Hou, T. Y.; Lefloch, P. G., Computational methods for propagating phase boundaries, J. Comput. Phys., 124, 192-216, (1996) · Zbl 0855.73080 · doi:10.1006/jcph.1996.0053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.