×

Theoretical studies on the effects of dispersal corridors on the permanence of discrete predator-prey models in patchy environment. (English) Zbl 1406.92534

Summary: We study two discrete predator-prey models in patchy environment, one without dispersal corridors and one with dispersal corridors. Dispersal corridors are passes that allow the migration of species from one patch to another and their existence may influence the permanence of the model. We will offer sufficient conditions to guarantee the permanence of the two predator-prey models. By comparing the two permanence criteria, we discuss the effects of dispersal corridors on the permanence of the predator-prey model. It is found that the dispersion of the prey from one patch to another is helpful to the permanence of the prey if the population growth of the prey is density dependent; however, this dispersion of the prey could be disadvantageous or advantageous to the permanence of the predator. Five numerical examples are presented to confirm the theoretical results obtained and to illustrate the effects of dispersal corridors on the permanence of the predator-prey model.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Schuster, P.; Sigmund, K.; Wolff, R., Dynamical systems under constant organization. III. Cooperative and competitive behavior of hypercycles, Journal of Differential Equations, 32, 3, 357-368 (1979) · Zbl 0384.34029 · doi:10.1016/0022-0396(79)90039-1
[2] Wu, C.; Cui, J., Global dynamics of discrete competitive models with large intrinsic growth rates, Discrete Dynamics in Nature and Society, 2009 (2009) · Zbl 1177.37087 · doi:10.1155/2009/710353
[3] Wu, C., Permanence and stable periodic solution for a discrete competitive system with multidelays, Advances in Difference Equations, 2009 (2009) · Zbl 1205.39017 · doi:10.1155/2009/375486
[4] Zhou, Z.; Zou, X., Stable periodic solutions in a discrete periodic logistic equation, Applied Mathematics Letters, 16, 2, 165-171 (2003) · Zbl 1049.39017 · doi:10.1016/S0893-9659(03)80027-7
[5] Çelik, C.; Duman, O., Allee effect in a discrete-time predator-prey system, Chaos, Solitons and Fractals, 40, 4, 1956-1962 (2009) · Zbl 1198.34084 · doi:10.1016/j.chaos.2007.09.077
[6] Baštinec, J.; Berezansky, L.; Diblík, J.; Šmarda, Z., On a delay population model with a quadratic nonlinearity without positive steady state, Applied Mathematics and Computation, 227, 622-629 (2014) · Zbl 1365.92087 · doi:10.1016/j.amc.2013.11.061
[7] Berezansky, L.; Baštinec, J.; Diblík, J.; Šmarda, Z., On a delay population model with quadratic nonlinearity, Advances in Difference Equations, 2012, article 230 (2012) · Zbl 1377.34093 · doi:10.1186/1687-1847-2012-230
[8] Jansen, V. A. A.; Sigmund, K., Shaken not stirred: on permanence in ecological communities, Theoretical Population Biology, 54, 3, 195-201 (1998) · Zbl 0963.92505 · doi:10.1006/tpbi.1998.1384
[9] Hastings, A., Complex interactions between dispersal and dynamics: lessons from coupled logistic equations, Ecology, 74, 5, 1362-1372 (1993) · doi:10.2307/1940066
[10] Holland, M. D.; Hastings, A., Strong effect of dispersal network structure on ecological dynamics, Nature, 456, 7223, 792-795 (2008) · doi:10.1038/nature07395
[11] Kim, Y.; Kwon, O.; Li, F., Evolution of dispersal toward fitness, Bulletin of Mathematical Biology, 75, 12, 2474-2498 (2013) · Zbl 1310.92044 · doi:10.1007/s11538-013-9904-8
[12] Levin, S. A., Dispersal and population interactions, American Naturalist, 108, 207-228 (1974)
[13] Lou, Y.; Lutscher, F., Evolution of dispersal in open advective environments, Journal of Mathematical Biology (2013) · Zbl 1307.35144 · doi:10.1007/s00285-013-0730-2
[14] Moquet, N.; Hoopes, M. F.; Amarasekare, P., The world is patchy and heterogeneous! Trade-off and source-sink dynamics in competitive metacommunities, Metacommunities: Spatial Dynamics and Ecological Communities, 237-262 (2005), Chicago, Ill, USA: University of Chicago Press, Chicago, Ill, USA
[15] Schreiber, S. J.; Killingback, T. P., Spatial heterogeneity promotes coexistence of rock-paper-scissors metacommunities, Theoretical Population Biology, 86, 1-11 (2013) · Zbl 1296.92219 · doi:10.1016/j.tpb.2013.02.004
[16] Zhang, X.; Wang, W. D., Importance of dispersal adaptations of two competitive populations between patches, Ecological Modelling, 222, 1, 11-20 (2011) · doi:10.1016/j.ecolmodel.2010.09.026
[18] Kong, F., Studies on the adaptability and behavior time assignments of Tibtan antelope using wild life passageways of Qinghai-Tibet railway, [Master dissertation] (2009), Shaanxi, China: Northwest University, Shaanxi, China
[19] Cui, J.; Chen, L., Permanence and extinction in logistic and Lotka-Volterra systems with diffusion, Journal of Mathematical Analysis and Applications, 258, 2, 512-535 (2001) · Zbl 0985.34061 · doi:10.1006/jmaa.2000.7385
[20] Cui, J.; Takeuchi, Y.; Lin, Z., Permanence and extinction for dispersal population systems, Journal of Mathematical Analysis and Applications, 298, 1, 73-93 (2004) · Zbl 1073.34052 · doi:10.1016/j.jmaa.2004.02.059
[21] Lu, Z.; Zhou, Y., Advances in Mathematical Biology (2006), Beijing, China: Science Press, Beijing, China
[22] Wu, C.; Cui, J., Permanence for a delayed discrete predator-prey model with prey dispersal, International Journal of Biomathematics, 2, 3, 311-320 (2009) · Zbl 1342.92209 · doi:10.1142/S1793524509000686
[23] Zhang, L.; Teng, Z., Permanence for a delayed periodic predator-prey model with prey dispersal in multi-patches and predator density-independent, Journal of Mathematical Analysis and Applications, 338, 1, 175-193 (2008) · Zbl 1147.34056 · doi:10.1016/j.jmaa.2007.05.016
[24] Braverman, E.; Kinzebulatov, D., On linear perturbations of the Ricker model, Mathematical Biosciences, 202, 2, 323-339 (2006) · Zbl 1097.92052 · doi:10.1016/j.mbs.2006.04.008
[25] Kang, Y.; Armbruster, D.; Kuang, Y., Dynamics of a plant-herbivore model, Journal of Biological Dynamics, 2, 2, 89-101 (2008) · Zbl 1140.92322 · doi:10.1080/17513750801956313
[26] Sun, G.; Zhang, G.; Jin, Z., Dynamic behavior of a discrete modified Ricker and Beverton-Holt model, Computers and Mathematics with Applications, 57, 8, 1400-1412 (2009) · Zbl 1186.34074 · doi:10.1016/j.camwa.2009.01.004
[27] Chow, Y.; Jang, S. R., Coexistence in a discrete competition model with dispersal, Journal of Difference Equations and Applications, 19, 4, 615-632 (2013) · Zbl 1262.39019 · doi:10.1080/10236198.2012.663361
[28] Silva, J. A. L.; Giordani, F. T., Density-dependent migration and synchronism in metapopulations, Bulletin of Mathematical Biology, 68, 2, 451-465 (2006) · Zbl 1334.92367 · doi:10.1007/s11538-005-9054-8
[29] Silva, J. A. L.; Giordani, F. T., Density-dependent dispersal in multiple species metapopulations, Mathematical Biosciences and Engineering, 5, 4, 843-857 (2008) · Zbl 1153.92338 · doi:10.3934/mbe.2008.5.843
[30] Yakubu, A., Asynchronous and synchronous dispersals in spatially discrete population models, SIAM Journal on Applied Dynamical Systems, 7, 2, 284-310 (2008) · Zbl 1159.37415 · doi:10.1137/070688122
[31] May, R. M.; Iooss, G.; Helleman, R.; Stora, R., Nonlinear problems in ecology, Chaotic Behavior of Deterministic Systems (1983), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands
[32] Ricker, E. W., Stock and recruitment, Journal of the Fisheries Research Board of Canada, 11, 5, 559-623 (1954) · doi:10.1139/f54-039
[33] Hastings, A., Population Biology: Concepts and Models (1996), New York, NY, USA: Springer, New York, NY, USA · Zbl 0870.92016
[34] Smith, H. L., Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperatiive Systems. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperatiive Systems, Mathematical Surveys and Monographs, 41 (1995), Providence, RI, USA: American Mathematical Society, Providence, RI, USA
[35] Lu, Z.; Wang, W., Permanence and global attractivity for Lotka-Volterra difference systems, Journal of Mathematical Biology, 39, 3, 269-282 (1999) · Zbl 0945.92022 · doi:10.1007/s002850050171
[36] Wang, W.; Lu, Z., Global stability of discrete models of Lotka-Voltera type, Nonlinear Analysis: Theory, Methods & Applications, 35, 8, 1019-1030 (1999) · Zbl 0919.92030
[37] Li, M. Y.; Shuai, Z., Global-stability problem for coupled systems of differential equations on networks, Journal of Differential Equations, 248, 1, 1-20 (2010) · Zbl 1190.34063 · doi:10.1016/j.jde.2009.09.003
[38] Zu, L.; Jiang, D. Q.; Jiang, F. Q., Existence, stationary distribution, and extinction of predator-prey system of prey dispersal with stochastic perturbation, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.60078 · doi:10.1155/2012/547152
[39] Berezovskaya, F. S.; Song, B. J.; Castillo-Chavez, C., Role of prey dispersal and refuges on predator-prey dynamics, SIAM Journal on Applied Mathematics, 70, 6, 1821-1839 (2010) · Zbl 1242.92056 · doi:10.1137/080730603
[40] Forrester, G. E., Influences of predatory fish on the drift dispersal and local density of stream insects, Ecology, 75, 5, 1208-1218 (1994) · doi:10.2307/1937447
[41] Allen, L. J. S., Persistence and extinction in single-species reaction-diffusion models, Bulletin of Mathematical Biology, 45, 2, 209-227 (1983) · Zbl 0543.92020 · doi:10.1016/S0092-8240(83)80052-4
[42] Wu, C., On the global asymptotic behavior of a discrete predator-prey model, Advances and Applications in Mathematical Sciences, 10, 2, 143-157 (2011) · Zbl 1238.39007
[43] Yang, X., Uniform persistence and periodic solutions for a discrete predator-prey system with delays, Journal of Mathematical Analysis and Applications, 316, 1, 161-177 (2006) · Zbl 1107.39017 · doi:10.1016/j.jmaa.2005.04.036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.