×

Small points on subvarieties of a torus. (English) Zbl 1234.11081

The authors improve earlier estimates by W. M. Schmidt [Cambridge: Cambridge University Press. Lond. Math. Soc. Lect. Note Ser. 235, 157–187 (1996; Zbl 0917.11023)], S. David and P. Philippon [Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28, No.3, 489–543 (1999; Zbl 1002.11055); Errata ibid. 29, 729–731 (2000)], and F. Amoroso and S. David [Compos. Math. 142, No. 3, 551–562 (2006; Zbl 1116.11045)] on lower bounds for the heights of points on subvarieties of linear tori. The most involved tools used by the authors are upper and lower bounds for the Hilbert function, due to Chardin and Philippon. Apart from that, the authors’ proof is much simpler than the arguments of David and Philippon and Amoroso and David.
The following notation is used. We view \({\mathbb G}_{{\mathbf m}}^n\) as a subset of \({\mathbb P}^n\) by identifying \((x_1,\ldots ,x_n)\) with \((1:x_1:\cdots :x_n)\). Thus, a subvariety of \({\mathbb G}_{{\mathbf m}}^n\) is the intersection of a subvariety of \({\mathbb P}^n\) with \({\mathbb G}_{{\mathbf m}}^n\). The height \(h\) on \({\mathbb G}_{{\mathbf m}}^n(\overline{{\mathbb Q}})\) is the absolute logarithmic Weil height from \({\mathbb P}^n({{\mathbb Q}})\). Given a subset \(S\) of \({\mathbb G}_{{\mathbf m}}^n(\overline{{\mathbb Q}})\), we denote by \(S(\varepsilon )\) the set of points \({\mathbf x}\in S\) with \(h({\mathbf x})\leq\varepsilon \) and by \(\overline{S(\varepsilon )}\) the Zariski closure in \({\mathbb G}_{{\mathbf m}}^n\) of this set. Given a subvariety \(V\) of \({\mathbb G}_{{\mathbf m}}^n\), we denote by \(\delta (V)\) the minimum of all integers \(\delta\) such that \(V\) is the intersection of hypersurfaces of degree at most \(\delta\). Further, we denote by \(\delta_0(V)\) the minimum of all integers \(\delta\) with the property that there exists an intersection \(X\) of hypersurfaces of degree at most \(\delta\) such that each irreducible component of \(V\) is an irreducible component of \(X\). We restrict ourselves to stating the following result.
Theorem. Let \(V\) be a not necessarily irreducible subvariety of \({\mathbb G}_{{\mathbf m}}^n\) of codimension \(k\), defined over \(\overline{{\mathbb Q}}\). Suppose that \(V=X_k\cup\cdots X_n\), where \(X_j\) is a union of irreducible components of codimension \(j\). Define \[ \theta =\theta (V):= \delta (V)\big( 200n^5\log (n^2\delta (V))\big)^{(n-k)n(n-1)}. \] Then \( \overline{V(\theta^{-1})}=G_k\cup\cdots\cup G_n , \) where \(G_j\) is either the empty set or a finite union of translates of subtori of \({\mathbf G}_{{\mathbf m}}^n\) of codimension \(j\) with \(\delta_0(G_j)\leq\theta\). Moreover, for \(r=k,\ldots ,n\) we have \[ \sum_{i=k}^r \theta^{r-i}\deg G_i\leq \sum_{i=k}^r \theta^{r-i}\deg X_i\leq\theta^r . \] For instance, let \(V^0\) be \(V\) minus the union of all positive dimensional translates of subtori contained in \(V\). Then the Theorem implies that \[ \#\{ {\mathbf x}\in V^0(\overline{{\mathbf Q}}):\, h({\mathbf x})\leq\theta\}\, \leq \theta^n.\tag{\(*\)} \] . Amoroso and David proved a similar result, but with instead of the above defined \(\theta\) an expression of the shape \(\theta '=\delta (V)(\log \delta (V))^{\lambda (n)}\) where \(\lambda (n)\) is exponential in \(n\). Another improvement concerns a lower bound for the essential minimum \(\hat{\mu}^{\text{ess}}(V)\), of \(V\) which is the supremum of all \(\varepsilon\) such that \(V\varepsilon )\) is not Zariski dense in \(V\). The authors obtained \(\hat{\mu}^{\text{ess}}(V)\geq \delta (V)^{-1}(\log \delta (V))^{-a(n)}\) with \(a(n)\) polynomial in \(n\), whereas Amoroso and David had such a bound with an exponential function \(a(n)\).
As an application, the authors give an improvement of an upper bound of Schlickewei, Schmidt and the reviewer for the number of non-degenerate solutions of the equation \(a_1x_1+\cdots +a_nx_n=1\) in \(x_1,\ldots ,x_n\in\Gamma\), where \(a_1,\ldots ,a_n\) are non-zero elements of a field \(K\) of characteristic \(0\), and \(\Gamma\) is a subgroup of \((K^*)^n\) of rank at most \(r\). Schlickewei, Schmidt and the reviewer obtained an upper bound \(c(n,r)=\exp \Big( (6n)^{3n}(r+1)\Big)\). Their argument uses both the quantitative Subspace Theorem to deal with the “large” solutions, and a weaker version of (*) due to Schmidt to deal with the “small” solutions. This last result of Schmidt was responsible for the doubly exponential dependence on \(n\) of \(c(n,r)\). With their new estimate (\(*\)), the authors manage to improve \(c(n,r)\) to \((8n)^{4n^4(n+r+1)}\).

MSC:

11G50 Heights
11J81 Transcendence (general theory)
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] I. Aliev and C. Smyth, Solving algebraic equations in roots of unity , · Zbl 0763.14008 · doi:10.1515/crll.1993.435.119
[2] F. Amoroso, Bogomolov on tori revisited , unpublished manuscript, 2007, http://hal.archives-ouvertes.fr/hal-00132119
[3] F. Amoroso and S. David, Minoration de la hauteur normalisée dans un tore , J. Inst. Math. Jussieu 2 (2003), 335–381. · Zbl 1041.11048 · doi:10.1017/S1474748003000094
[4] - Points de petite hauteur sur une sous-variété d’un tore , Compos. Math. 142 (2006), 551–562. · Zbl 1116.11045 · doi:10.1112/S0010437X06002004
[5] E. Bombieri, D. Masser, and U. Zannier, Intersecting a curve with algebraic subgroups of multiplicative groups , Internat. Math. Res. Notices 1999 , no. 20, 1119–1140. · Zbl 0938.11031 · doi:10.1155/S1073792899000628
[6] E. Bombieri and U. Zannier, Algebraic points on subvarieties of \(\gum^n\) , Internat. Math. Res. Notices 1995 , no. 7, 333–347. · Zbl 0848.11030 · doi:10.1155/S1073792895000250
[7] M. Chardin, Une majoration de la fonction de Hilbert et ses conséquences pour l’interpolation algébrique , Bull. Soc. Math. France 117 (1988), 305–318. · Zbl 0709.13007
[8] M. Chardin and P. Philippon, Régularité et interpolation , J. Algebraic Geom. 8 (1999), 471–481.; Erratum , J. Algebraic Geom. 11 (2002), 599–600.\(\!\); Mathematical Reviews (MathSciNet): · Zbl 0962.13014
[9] S. David and P. Philippon, Minorations des hauteurs normalisées des sous-variétés des tores , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 489–543.; Errata , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), 729–731.\(\!\); Mathematical Reviews (MathSciNet): · Zbl 1002.11055
[10] J.-H. Evertse, “Points on subvarieties of tori” in A Panorama of Number Theory or the View from Baker’s Garden (Zürich, 1999) , Cambridge Univ. Press, Cambridge, 2002, 214–230. · Zbl 1040.11047
[11] J.-H. Evertse, H.-P. Schlickewei, and W. M. Schmidt, Linear equations in variables which lie in a multiplicative group , Ann. of Math. (2) 155 (2002), 807–836. JSTOR: · Zbl 1026.11038 · doi:10.2307/3062133
[12] P. Habegger, A Bogomolov property for curves modulo algebraic subgroups , Bull. Soc. Math. France 137 (2009), 93–125. · Zbl 1270.11063
[13] M. Hindry, Autour d’une conjecture de Serge Lang , Invent. Math. 94 (1988), 575–603. · Zbl 0638.14026 · doi:10.1007/BF01394276
[14] M. Laurent, Équations diophantiennes exponentielles , Invent. Math. 78 (1984), 299–327. · Zbl 0554.10009 · doi:10.1007/BF01388597
[15] P. Philippon, Lemmes de zéros dans les groupes algébriques commutatifs , Bull. Soc. Math. France 114 (1986), 353–383. · Zbl 0617.14001
[16] -, Sur des hauteurs alternatives, III , J. Math. Pures Appl. (9) 74 (1995), 345–365. · Zbl 0878.11025
[17] B. Poonen, Mordell-Lang plus Bogomolov , Invent. Math. 137 (1999), 413–425. · Zbl 0995.11040 · doi:10.1007/s002220050331
[18] G. RéMond, Sur les sous-variétés des tores , Compositio Math. 134 (2002), 337–366. · Zbl 1101.14030 · doi:10.1023/A:1020982431028
[19] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers , Illinois J. Math. 6 (1962), 64–94. · Zbl 0122.05001
[20] W. M. Schmidt, “Heights of points on subvarieties of \(\gum^n\)” in Number Theory (Paris, 1993–1994.) , London Math. Soc. Lecture Note Ser. 235 , Cambridge Univ. Press, Cambridge, 1996, 157–187. · Zbl 0917.11023
[21] E. Viada, The intersection of a curve with a union of translated codimension-two subgroups in a power of an elliptic curve , Algebra Number Theory 2 (2008), 249–298. · Zbl 1168.11024 · doi:10.2140/ant.2008.2.249
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.