zbMATH — the first resource for mathematics

Triangular norm based predicate fuzzy logics. (English) Zbl 1200.03020
The authors present an interesting survey of predicate fuzzy logics based on triangular norms (t-norms), collecting previous results by themselves and by other authors in the more general context of core fuzzy logics (i.e., logics expanding MTL and satisfying the local deduction theorem) and Delta-core fuzzy logics (i.e., logics expanding MTL with Delta and satisfying the Delta deduction theorem). Besides the main definitions and results in the general case, some variants are also presented, for example the logic with crisp equality and the logic of witnessed models. Complexity issues and some model theory are also dealt with. The paper ends with a section on examples of theories over predicate fuzzy logic (such as fuzzy arithmetic and fuzzy set theory) and with a very complete list of references.

MSC:
 03B52 Fuzzy logic; logic of vagueness 03B50 Many-valued logic 03C90 Nonclassical models (Boolean-valued, sheaf, etc.)
Full Text:
References:
 [1] Aglianò, P.; Montagna, F., Varieties of BL-algebras I: general properties, Journal of pure and applied algebra, 181, 105-129, (2003) · Zbl 1034.06009 [2] Baaz, M., Infinite-valued Gödel logic with 0-1-projections and relativisations, (), 23-33 · Zbl 0862.03015 [3] M. Baaz, A. Ciabattoni, C. Georg Fermüller, Herbrand theorem for prenex Gödel logic and its consequences for theorem proving, in: R. Nieuwenhuis, A. Voronkov (Eds.), Logic for Programming, Artificial Intelligence, and Reasoning, Lecture Notes in Computer Science, Vol. 2250/2001, Springer, Berlin, 2001, pp. 201-216. · Zbl 1275.03098 [4] M. Baaz, A. Ciabattoni, C. Georg Fermüller, Monadic fragments of Gödel logics: decidability and undecidability results, in: N. Dershowitz, A. Voronkov (Eds.), Logic for Programming, Artificial Intelligence, and Reasoning, Lecture Notes in Computer Science, Vol. 4790/2007, Springer, Berlin, 2007, pp. 77-91. · Zbl 1138.03025 [5] Baaz, M.; Ciabattoni, A.; Montagna, F., Analytic calculi for monoidal t-norm based logic, Fundamenta informaticae, 59, 4, 315-332, (2004) · Zbl 1057.03019 [6] M. Baaz, A. Leitsch, R. Zach, Incompleteness of a first-order Gödel logic and some temporal logics of programs, in: Computer Science Logic, Lecture Notes in Computer Science, Vol. 1092/1996, Springer, Berlin, 1996, pp. 1-15. [7] M. Baaz, G. Metcalfe, Herbrand’s theorem, Skolemization, and proof systems for first-order Łukasiewicz logic. Journal of Logic and Computation (2009), to appear, doi:10.1093/logcom/exn059. · Zbl 1188.03014 [8] Baaz, M.; Zach, R., Compact propositional Gödel logics, (), 108-113 [9] Baaz, M.; Zach, R., Hypersequents and the proof theory of intuitionistic fuzzy logic, (), 187-201 · Zbl 0973.03029 [10] L. Běhounek, Towards a formal theory of fuzzy Dedekind reals, in: E. Montseny, P. Sobrevilla (Eds.), Proc. Joint Fourth Conf. of EUSFLAT and the 11th LFA, Barcelona, 2005, pp. 946-954. [11] Běhounek, L., On the difference between traditional and deductive fuzzy logic, Fuzzy sets and systems, 159, 10, 1153-1164, (2008) · Zbl 1175.03012 [12] Běhounek, L.; Bodenhofer, U.; Cintula, P., Relations in fuzzy class theory: initial steps, Fuzzy sets and systems, 159, 14, 1729-1772, (2008) · Zbl 1185.03078 [13] Běhounek, L.; Cintula, P., Fuzzy class theory, Fuzzy sets and systems, 154, 1, 34-55, (2005) · Zbl 1086.03043 [14] Běhounek, L.; Cintula, P., From fuzzy logic to fuzzy mathematics: a methodological manifesto, Fuzzy sets and systems, 157, 5, 642-646, (2006) · Zbl 1108.03027 [15] L. Běhounek, P. Cintula, Fuzzy class theory: a primer v1.0, Technical Report V-939, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, 2006. Available at $$\langle$$www.cs.cas.cz/research/library/reports_900.shtml⟩. [16] Běhounek, L.; Cintula, P., Features of mathematical theories in formal fuzzy logic, (), 523-532 · Zbl 1202.03034 [17] Běhounek, L.; Daňková, M., Relational compositions in fuzzy class theory, Fuzzy sets and systems, 160, 8, 1005-1036, (2008) · Zbl 1185.03079 [18] L. Běhounek, T. Kroupa, Interior-based topology in fuzzy class theory, in: M. Štěpnička, V. Novák, U. Bodenhofer, (Eds.), New Dimensions in Fuzzy Logic and Related Technologies: Proc. Fifth Eusflat Conf., Vol. I, University of Ostrava, 2007, pp. 145-151. · Zbl 1202.54006 [19] Běhounek, L.; Kroupa, T., Topology in fuzzy class theory: basic notions, (), 513-522 · Zbl 1202.54006 [20] Peter Belluce, L.; Chung Chang, C., A weak completeness theorem on infinite valued predicate logic, Journal of symbolic logic, 28, 1, 43-50, (1963) [21] R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles, in: IFSR Internat. Series on Systems Science and Engineering, Vol. 20, Kluwer Academic/Plenum Press, New York, 2002. [22] Bělohlávek, R., Birkhoff variety theorem and fuzzy logic, Archive for mathematical logic, 42, 8, 781-790, (2005) · Zbl 1040.03018 [23] R. Bělohlávek, V. Vychodil, Fuzzy equational logic, in: Studies in Fuzziness and Soft Computing, Vol. 186, Springer, Berlin, Heidelberg, 2005. · Zbl 1083.03030 [24] Bělohlávek, R.; Vychodil, V., Fuzzy Horn logic I: proof theory, Archive for mathematical logic, 45, 1, 3-51, (2006) · Zbl 1095.03014 [25] W.J. Blok, D. Pigozzi, Algebraizable Logics, in: Memoirs of the American Mathematical Society, Vol. 396, American Mathematical Society, Providence, 1989. [26] Chung Chang, C., The axiom of comprehension in infinite valued logic, Mathematica scandinavica, 13, 9-30, (1963) · Zbl 0137.00501 [27] Ciabattoni, A., Automated generation of analytic calculi for logics with linearity, (), 503-517 · Zbl 1095.68109 [28] Cicalese, F.; Mundici, D., Recent developments of feedback coding and its relations with many-valued logic, (), 222-240 [29] R. Cignoli, I.M.L. D’Ottaviano, D. Mundici, Algebraic Foundations of Many-Valued Reasoning, in: Trends in Logic, Vol. 7, Kluwer, Dordercht, 1999. [30] Cignoli, R.; Esteva, F.; Godo, L.; Torrens, A., Basic fuzzy logic is the logic of continuous t-norms and their residua, Soft computing, 4, 2, 106-112, (2000) [31] Cintula, P., Weakly implicative (fuzzy) logics I: basic properties, Archive for mathematical logic, 45, 6, 673-704, (2006) · Zbl 1101.03015 [32] Cintula, P.; Esteva, F.; Gispert, J.; Godo, L.; Montagna, F.; Noguera, C., Distinguished algebraic semantics for t-norm based fuzzy logics: methods and algebraic equivalencies, Annals of pure and applied logic, 160, 1, 53-81, (2009) · Zbl 1168.03052 [33] Cintula, P.; Hájek, P., Complexity issues in axiomatic extensions of łukasiewicz logic, Journal of logic and computation, 19, 2, 245-260, (2009) · Zbl 1165.03009 [34] Cintula, P.; Hájek, P.; Horčík, R., Formal systems of fuzzy logic and their fragments, Annals of pure and applied logic, 150, 1-3, 40-65, (2007) · Zbl 1140.03010 [35] P. Cintula, R. Horčík, Fuzzy class theory: some advanced topics, in: M. Štěpnička, V. Novák, U. Bodenhofer (Eds.), New Dimensions in Fuzzy Logic and Related Technologies, Proc. 5th EUSFLAT Conf., Vol. I, University of Ostrava, Ostrava, 2007, pp. 137-144. [36] Cintula, P.; Majer, O., Towards evaluation games for fuzzy logics, (), 117-138 · Zbl 1167.03021 [37] P. Cintula, C. Noguera, A hierarchy of implicational (semilinear) logics: the propositional case, 2009, submitted for publication. · Zbl 1196.03013 [38] Di Nola, A.; Georgescu, G.; Spada, L., Forcing in łukasiewicz predicate logic, Studia logica, 89, 1, 111-145, (2008) · Zbl 1170.03013 [39] Dummett, M., A propositional calculus with denumerable matrix, Journal of symbolic logic, 27, 97-106, (1959) · Zbl 0089.24307 [40] Esteva, F.; Gispert, J.; Godo, L.; Montagna, F., On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic, Studia logica, 71, 2, 199-226, (2002) · Zbl 1011.03015 [41] Esteva, F.; Gispert, J.; Godo, L.; Noguera, C., Adding truth-constants to continuous t-norm based logics: axiomatization and completeness results, Fuzzy sets and systems, 158, 597-618, (2007) · Zbl 1117.03030 [42] Esteva, F.; Godo, L., Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy sets and systems, 124, 3, 271-288, (2001) · Zbl 0994.03017 [43] Esteva, F.; Godo, L.; Hájek, P.; Navara, M., Residuated fuzzy logics with an involutive negation, Archive for mathematical logic, 39, 2, 103-124, (2000) · Zbl 0965.03035 [44] Esteva, F.; Godo, L.; Montagna, F., The $$Ł \operatorname{\Pi}$$ and $$Ł \operatorname{\Pi} \frac{1}{2}$$ logics: two complete fuzzy systems joining łukasiewicz and product logics, Archive for mathematical logic, 40, 1, 39-67, (2001) · Zbl 0966.03022 [45] Esteva, F.; Godo, L.; Noguera, C., First-order t-norm based fuzzy logics with truth-constants: distinguished semantics and completeness properties, Annals of pure and applied logic, 161, 2, 185-202, (2009) · Zbl 1222.03027 [46] F. Esteva, L. Godo, C. Noguera, On expansions of WNM t-norm based logics with truth-constants. Fuzzy Sets and Systems (2009), to appear, doi:10.1016/j.fss.2009.09.002. · Zbl 1193.03049 [47] Erik Fenstad, J., On the consistency of the axiom of comprehension in the łukasiewicz infinite valued logic, Mathematica scandinavica, 14, 65-74, (1964) · Zbl 0134.01601 [48] C. Georg Fermüller, Parallel dialogue games and hypersequents for intermediate logics, in: M. Cialdea Mayer, F. Pirri (Eds.), Proc. TABLEAUX Conf. 2003, Rome, 2003, pp. 48-64. · Zbl 1274.03052 [49] Georg Fermüller, C., Theories of vagueness versus fuzzy logic: can logicians learn from philosophers?, Neural network world, 13, 455-465, (2003) [50] Flaminio, T., Strong non-standard completeness for fuzzy logics, Soft computing, 12, 4, 321-333, (2007) · Zbl 1132.03332 [51] Maria Font, J.; Jansana, R.; Pigozzi, D., A survey of abstract algebraic logic, Studia logica, 74, 1-2, 13-97, (2003), (special issue on Abstract Algebraic Logic II) · Zbl 1057.03058 [52] N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and the Foundations of Mathematics, Vol. 151, Elsevier, Amsterdam, 2007. · Zbl 1171.03001 [53] Galatos, N.; Raftery, J.G., Adding involution to residuated structures, Studia logica, 77, 2, 181-207, (2004) · Zbl 1062.03059 [54] B. Gerla, Many-valued logics of continuous T-norms and their functional representation, Ph.D. Thesis, University of Milano, Milano, 2002. [55] Gerla, G., Fuzzy logic—mathematical tool for approximate reasoning, (2001), Kluwer Academic Publishers, Plenum Press New York · Zbl 0976.03026 [56] Girard, J.-Y., Linear logic, Theoretical computer science, 50, 1, 1-102, (1987) · Zbl 0625.03037 [57] Gödel, K., Zum intuitionistischen aussagenkalkül, Anzieger akademie der wissenschaften wien, 69, 65-66, (1932) · JFM 58.1001.03 [58] Gottwald, S., Untersuchungen zur mehrwertigen mengenlehre I, Mathematische nachrichten, 72, 297-303, (1976) · Zbl 0339.02054 [59] Gottwald, S., Untersuchungen zur mehrwertigen mengenlehre II, Mathematische nachrichten, 74, 329-336, (1976) · Zbl 0342.02045 [60] Gottwald, S., Untersuchungen zur mehrwertigen mengenlehre III, Mathematische nachrichten, 79, 207-217, (1977) · Zbl 0362.02066 [61] Gottwald, S., Universes of fuzzy sets and axiomatizations of fuzzy set theory. part I: model-based and axiomatic approaches, Studia logica, 82, 2, 144-211, (2006) · Zbl 1111.03047 [62] Gottwald, S., Universes of fuzzy sets and axiomatizations of fuzzy set theory. part II: category theoretic approaches, Studia logica, 84, 1, 23-50, (2006) · Zbl 1124.03027 [63] Gottwald, S., Mathematical fuzzy logics, The bulletin of symbolic logic, 14, 210-239, (2008) · Zbl 1144.03023 [64] Gottwald, S.; Hájek, P., Triangular norm based mathematical fuzzy logic, (), 275-300 · Zbl 1078.03020 [65] P. Hájek, Towards metamathematics of weak arithmetic over fuzzy logic, submitted for publication. [66] P. Hájek, Metamathematics of Fuzzy Logic, Trends in Logic, Vol. 4, Kluwer Academic Publishers, Dordercht, 1998. [67] Hájek, P., Fuzzy logic and arithmetical hierarchy III, Studia logica, 68, 1, 129-142, (2001) · Zbl 0988.03042 [68] Hájek, P., Observations on the monoidal t-norm logic, Fuzzy sets and systems, 132, 1, 107-112, (2002) · Zbl 1012.03035 [69] Hájek, P., Fuzzy logics with noncommutative conjunctions, Journal of logic and computation, 13, 4, 469-479, (2003) · Zbl 1036.03018 [70] P. Hájek, Mathematical fuzzy logic and set theory developed in it, in: Proc. Takeuti Symp., Kobe, 2003, pp. 58-69. [71] Hájek, P., Fuzzy logic and arithmetical hierarchy IV, (), 107-115 · Zbl 1084.03020 [72] Hájek, P., Arithmetical complexity of fuzzy predicate logics—a survey, Soft computing, 9, 12, 935-941, (2005) · Zbl 1093.03012 [73] Hájek, P., Fleas and fuzzy logic, Journal of multiple-valued logic and soft computing, 11, 1-2, 137-152, (2005) · Zbl 1078.03021 [74] Hájek, P., Making fuzzy description logic more general, Fuzzy sets and systems, 154, 1, 1-15, (2005) · Zbl 1094.03014 [75] Hájek, P., A non-arithmetical Gödel logic, Logic journal of the interest group of pure and applied logic, 13, 5, 435-441, (2005) · Zbl 1086.03018 [76] Hájek, P., On arithmetic in cantor-łukasiewicz fuzzy set theory, Archive for mathematical logic, 44, 6, 763-782, (2005) · Zbl 1096.03064 [77] Hájek, P., Mathematical fuzzy logic and natural numbers, Fundamenta informaticae, 81, 155-163, (2007) · Zbl 1139.03016 [78] Hájek, P., On witnessed models in fuzzy logic, Mathematical logic quarterly, 53, 1, 66-77, (2007) · Zbl 1110.03013 [79] Hájek, P., On witnessed models in fuzzy logic II, Mathematical logic quarterly, 53, 6, 610-615, (2007) · Zbl 1126.03031 [80] Hájek, P., On arithmetical complexity of fragments of prominent fuzzy predicate logics, Soft computing, 12, 4, 335-340, (2008) · Zbl 1142.03014 [81] Hájek, P., Arithmetical complexity of fuzzy predicate logics—a survey II, Annals of pure and applied logic, 161, 2, 212-219, (2009) · Zbl 1182.03050 [82] Hájek, P., On vagueness, truth values and fuzzy logics, Studia logica, 91, 3, 367-382, (2009) · Zbl 1173.03023 [83] P. Hájek, On witnessed models in fuzzy logic III. Mathematical Logic Quarterly (2009), submitted for publication. [84] Hájek, P.; Cintula, P., On theories and models in fuzzy predicate logics, Journal of symbolic logic, 71, 3, 863-880, (2006) · Zbl 1111.03030 [85] Hájek, P.; Godo, L.; Esteva, F., A complete many-valued logic with product conjunction, Archive for mathematical logic, 35, 3, 191-208, (1996) · Zbl 0848.03005 [86] Hájek, P.; Godo, L.; Esteva, F.; Montagna, F., Hoops and fuzzy logic, Journal of logic and computation, 13, 4, 532-555, (2003) · Zbl 1039.03016 [87] Hájek, P.; Haniková, Z., A development of set theory in fuzzy logic, (), 273-285 · Zbl 1040.03041 [88] Hájek, P.; Novák, V., The sorites paradox and fuzzy logic, International journal of general systems, 32, 373-383, (2003) · Zbl 1044.03017 [89] Hájek, P.; Paris, J.; Shepherdson, J.C., The liar paradox and fuzzy logic, Journal of symbolic logic, 65, 1, 339-346, (2000) · Zbl 0945.03031 [90] Hájek, P.; Paris, J.; Shepherdson, J.C., Rational pavelka logic is a conservative extension of łukasiewicz logic, Journal of symbolic logic, 65, 2, 669-682, (2000) · Zbl 0971.03025 [91] Hájek, P.; Pudlák, P., Metamathematics of first-order arithmetic, () · Zbl 0781.03047 [92] P. Hájek, J. Ševčík, On fuzzy predicate calculi with non-commutative conjunction, in: Proc. East West Fuzzy Colloq., Zittau, 2004, pp. 103-110. [93] Hintikka, J.; Sandu, G., Game-theoretical semantics, (), 361-410 [94] Höhle, U., Commutative, residuated l-monoids, (), 53-106 · Zbl 0838.06012 [95] Horčík, R., Standard completeness theorem for $$\operatorname{\Pi} \operatorname{MTL}$$, Archive for mathematical logic, 44, 4, 413-424, (2005) · Zbl 1071.03013 [96] Horčík, R., Solution of a system of linear equations with fuzzy numbers, Fuzzy sets and systems, 159, 14, 1788-1810, (2008) · Zbl 1183.65048 [97] Horčík, R.; Cintula, P., Product łukasiewicz logic, Archive for mathematical logic, 43, 4, 477-503, (2004) · Zbl 1059.03011 [98] D. Hyde, Sorites paradox, in: E.N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy, Fall 2004 $$\langle$$http://plato.stanford.edu/archives/fall2004/entries/sorites-paradox/⟩. [99] Jenei, S., On the structure of rotation-invariant semigroups, Archive for mathematical logic, 42, 489-514, (2003) · Zbl 1028.06009 [100] Jenei, S.; Montagna, F., A proof of standard completeness for esteva and Godo’s logic MTL, Studia logica, 70, 2, 183-192, (2002) · Zbl 0997.03027 [101] Keefe, R.; Smith, P., Vagueness: A reader, (1999), The MIT Press Cambridge, MA [102] Klaua, D., Über einen ansatz zur mehrwertigen mengenlehre, Monatsberichte der deutsche akademie der wissenschaften zu Berlin, 7, 859-867, (1965) · Zbl 0154.26001 [103] Klaua, D., Über einen zweiten ansatz zur mehrwertigen mengenlehre, Monatsberichte der deutsche akademie der wissenschaften zu Berlin, 8, 782-802, (1966) · Zbl 0168.00802 [104] T. Kroupa, Towards formal theory of measure on clans of fuzzy sets, in: E. Montseny, P. Sobrevilla, (Eds.), Proc. Joint 4th Conf. of EUSFLAT and the 11th LFA, Barcelona, 2005, pp. 351-356. [105] Kroupa, T., Filters in fuzzy class theory, Fuzzy sets and systems, 159, 14, 1773-1787, (2008) · Zbl 1185.03080 [106] Łukasiewicz, J., O logice trójwartościowej (on three-valued logic), Ruch filozoficzny, 5, 170-171, (1920) [107] Metcalfe, G.; Montagna, F., Substructural fuzzy logics, Journal of symbolic logic, 72, 3, 834-864, (2007) · Zbl 1139.03017 [108] G. Metcalfe, N. Olivetti, D.M. Gabbay, Proof Theory for Fuzzy Logics, in: Applied Logic Series, Vol. 36, Springer, Berlin, 2008. · Zbl 1168.03002 [109] Montagna, F., Three complexity problems in quantified fuzzy logic, Studia logica, 68, 1, 143-152, (2001) · Zbl 0985.03014 [110] Montagna, F., On the predicate logics of continuous t-norm BL-algebras, Archive for mathematical logic, 44, 97-114, (2005) · Zbl 1070.03013 [111] F. Montagna, C. Noguera, Arithmetical complexity of first-order predicate fuzzy logics over distinguished semantics. Journal of Logic and Computation (2009), to appear, doi:10.1093/logcom/exp052. · Zbl 1198.03032 [112] Montagna, F.; Noguera, C.; Horčík, R., On weakly cancellative fuzzy logics, Journal of logic and computation, 16, 4, 423-450, (2006) · Zbl 1113.03021 [113] Montagna, F.; Ono, H., Kripke semantics, undecidability and standard completeness for esteva and Godo’s logic $$\operatorname{MTL} \forall$$, Studia logica, 71, 2, 227-245, (2002) · Zbl 1013.03021 [114] F. Montagna, L. Sacchetti, Kripke-style semantics for many-valued logics, Mathematical Logic Quarterly 9 (6) (2003) 621-641; and 50 (1) (2004) 104-107 (Corrigendum). · Zbl 1035.03010 [115] Mundici, D., Ulam games, łukasiewicz logic and $$\operatorname{AFC}^*$$-algebras, Fundamenta informaticae, 18, 151-161, (1993) · Zbl 0780.03030 [116] Murinová, P.; Novák, V., Omitting types in fuzzy logic with evaluated syntax, Mathematical logic quarterly, 52, 3, 259-268, (2006) · Zbl 1100.03012 [117] Di Nola, A.; Gerla, G., Fuzzy models of first-order languages, Zeitschrift für mathematische logik und grundlagen der Mathematik, 32, 19-24, 331-340, (1986) · Zbl 0583.03043 [118] Novák, V., On the syntactico-semantical completeness of first-order fuzzy logic part I (syntax and semantic), part II (main results), Kybernetika, 26, 47-66, (1990), 134-154 · Zbl 0705.03009 [119] Novák, V., Joint consistency of fuzzy theories, Mathematical logic quarterly, 48, 563-573, (2002) · Zbl 1019.03020 [120] Novák, V., On fuzzy type theory, Fuzzy sets and systems, 149, 2, 235-273, (2004) · Zbl 1068.03019 [121] Novák, V., Fuzzy logic with countable evaluated syntax, Fuzzy logic, soft computing and computational intelligence: 11th IFSA world congress, Vol. 2, (2005), Tsinghua University Press, Springer Beijing, 1264-1269 [122] Novák, V., A comprehensive theory of trichotomous evaluative linguistic expressions, Fuzzy sets and systems, 159, 2939-2969, (2008) · Zbl 1176.03012 [123] Novák, V., A formal theory of intermediate quantifiers, Fuzzy sets and systems, 159, 10, 1229-1246, (2008) · Zbl 1176.03011 [124] Novák, V.; Perfilieva, I.; Močkoř, J., Mathematical principles of fuzzy logic, (2000), Kluwer Academic Publishers Dordrecht [125] Parikh, R., On existence and feasibility in arithmetic, Journal of symbolic logic, 36, 494-508, (1971) · Zbl 0243.02037 [126] Pavelka, J., On fuzzy logic I, II, III, Zeitschrift für mathematische logik und grundlagen der Mathematik, 25, 45-52, (1979), 119-134, 447-464 · Zbl 0435.03020 [127] Rasiowa, H., An algebraic approach to non-classical logics, (1974), North-Holland Amsterdam · Zbl 0299.02069 [128] Restall, G., Arithmetic and truth in łukasiewicz’s infinitely valued logic, Logique et analyse, 36, 25-38, (1995) [129] Rogers, H., Theory of recursive functions and effective computability, (1967), McGraw-Hill New York · Zbl 0183.01401 [130] Sandu, G., On the logic of informational independence and its applications, Journal of philosophical logic, 22, 29-60, (1993) · Zbl 0764.03009 [131] Savický, P.; Cignoli, R.; Esteva, F.; Godo, L.; Noguera, C., On product logic with truth constants, Journal of logic and computation, 16, 2, 205-225, (2006) · Zbl 1102.03030 [132] Shapiro, S., Vagueness in context, (2006), Oxford University Press Oxford [133] Skolem, T., A set theory based on a certain 3-valued logic, Mathematica scandinavica, 8, 71-80, (1960) [134] Smith, N.J.J., Vagueness and degrees of truth, (2009), Oxford University Press Oxford [135] W. Wechler, Universal Algebra for Computer Scientists, in: EATCS Monographs on Theoretical Computer Science, Vol. 25, Springer, Berlin, 1992. [136] White, R.B., The consistency of the axiom of comprehension in the infinite-valued predicate logic of łukasiewicz, Journal of philosophical logic, 8, 509-534, (1979) · Zbl 0418.03037 [137] Yatabe, S., A note on Hájek, Paris and Shepherdson’s theorem, Logic journal of the interest group of pure and applied logic, 13, 261-266, (2005) · Zbl 1078.03043 [138] Yatabe, S., Distinguishing non-standard natural numbers in a set theory within łukasiewicz logic, Archive for mathematical logic, 46, 281-287, (2007) · Zbl 1110.03049 [139] Yatabe, S., Comprehension contradicts to the induction within łukasiewicz predicate logic, Archive for mathematical logic, 48, 265-268, (2009) · Zbl 1173.03024 [140] Zadeh, L.A., Fuzzy sets, Information and control, 8, 3, 338-353, (1965) · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.