×

Mode mixity and nonlinear viscous effects on toughness of interfaces. (English) Zbl 1169.74569

Summary: This paper examines steady-state crack growth at interfaces between polymeric materials and hard substrates under quasi-static conditions. The polymeric material is taken to be an elastic nonlinear viscous solid while the substrate is treated as a rigid material. Void growth and coalescence in the rate-dependent fracture process zone is modeled by a nonlinear viscous porous strip of cell elements. In the first part of this paper, the polymeric background material surrounding the process zone is assumed to be purely elastic. Under fixed mode mixity, the computed interface toughness is found to be a monotonically increasing function of crack velocity; toughness also increases rapidly with higher rate sensitivity. This behavior can be explained in terms of voids growing in a strain-rate strengthened process zone. In the second part of the paper, the background material is also treated as an elastic nonlinear viscous solid. The competition between work of separation in the process zone and energy dissipation in the background material leads to a U-shaped toughness-crack velocity curve. Effects of mode mixity, initial porosity, rate sensitivity, as well as the initial yield strain on toughness are studied. The simulations produce trends that agree with interface toughness vs. crack velocity data reported in experimental studies for rubber toughened epoxy-paste adhesive and urethane acrylate adhesive.

MSC:

74R20 Anelastic fracture and damage
74D10 Nonlinear constitutive equations for materials with memory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cheng, L.; Guo, T. F.: Vapor pressure assisted void growth and cracking of polymeric films and interfaces, Interface sci. 11, 277-290 (2003)
[2] Cheng, L.; Guo, T. F.: Void interaction and coalescence in polymeric materials, Int. J. Solids struct. 44, 1787-1808 (2007) · Zbl 1109.74045 · doi:10.1016/j.ijsolstr.2006.08.007
[3] Chew, H. B.; Guo, T. F.; Cheng, L.: Vapor pressure and residual stress effects on failure of an adhesive film, Int. J. Solids struct. 42, 4795-4810 (2005) · Zbl 1119.74545 · doi:10.1016/j.ijsolstr.2005.01.012
[4] Conley, K. M.; Gu, W.; Ritter, J. E.; Lardner, T. J.: Observation on finger-like crack growth at a urethane acrylate/Glass interface, J. adhesion 39, 173-184 (1992)
[5] Creton, C.; Kramer, E. J.; Hui, C. Y.; Brown, H. R.: Failure mechanisms of polymer interface reinforced with block copolymers, Macromolecules 25, 3075-3088 (1992)
[6] Dean, R.H., Hutchinson, J.W., 1980. Quasi-static steady crack growth in small-scale yielding. In: Fracture Mechanics: 12th Conference, ASTM STP 700, America Society for Testing and Materials, pp. 383 – 405.
[7] Döll, W.: Optical interference measurements and fracture-mechanics analysis of crack tip zones, Adv. polymer, No. 52/53, 105-168 (1983)
[8] Du, J.; Thouless, M. D.; Yee, A. F.: Development of a process zone in rubber-modified epoxy polymers, Int. J. Fracture 92, 271-285 (1998)
[9] Du, J.; Thouless, M. D.; Yee, A. F.: Effects of rate on crack growth in a rubber-modified epoxy, Acta mater. 48, 3581-3592 (2000)
[10] Dugdale, D. S.: Yielding of steel sheets containing slits, J. mech. Phys. solids 8, 100-104 (1960)
[11] Estevez, R.; Van Der Giessen, E.: Modeling and computational analysis of fracture of glassy polymers, Adv. polymer sci. 188, 195-234 (2005)
[12] Evans, A. G.; Ahmad, Z. B.; Gilbert, D. G.; Beaumont, P. W. R.: Mechanisms of toughening in rubber toughened polymers, Acta metal. 34, 79-87 (1986)
[13] Guo, T. F.; Cheng, L.: Modeling vapor pressure effects on void rupture and crack growth resistance, Acta mater. 50, 3487-3500 (2002)
[14] Guo, T. F.; Cheng, L.: Vapor pressure and void size effects on failure of a constrained ductile film, J. mech. Phys. solids 51, 993-1014 (2003) · Zbl 1032.74650 · doi:10.1016/S0022-5096(03)00007-3
[15] Hui, C. Y.; Riedel, H.: The asymptotic stress and strain field near the tip of a growing crack under creep conditions, Int. J. Fracture 117, 409-425 (1981)
[16] Kambour, R. P.: A review of crazing and fracture in thermoplastics, J. polymer sci.: macromolecular rev. 7, 1-154 (1973)
[17] Kinloch, A. J.; Young, R. J.: Fracture behavior of polymers, (1983)
[18] Kinloch, A. J.; Gilbert, O. G.; Shaw, S. J.: A mechanism for ductile crack growth in epoxy polymers, J. mater. Sci. 21, 1051-1056 (1986)
[19] Korenberg, C. F.; Kinloch, A. J.; Watts, J. F.: Crack growth of structural adhesive joints in humid environments, J. adhesion 80, 169-201 (2004)
[20] Kramer, E. J.; Berger, L. L.: Fundamental processes of craze growth and fracture, Adv. polym. Sci., No. 91/92, 1-68 (1990)
[21] Landis, Cm.; Pardoen, T.; Hutchinson, J. W.: Crack velocity dependent toughness in rate dependent materials, Mechanics mater. 32, 663-678 (2000)
[22] Liechti, K. M.; Wu, J. D.: Mixed-mode, time-dependent rubber/metal debonding, J. mech. Phys. solids 49, 1039-1072 (2001) · Zbl 0969.74574 · doi:10.1016/S0022-5096(00)00065-X
[23] Omi, S.; Fujita, K.; Tsuda, T.; Maeda, T.: Cause of cracks in SMD and type-specific remedies, IEEE transac. Components packaging manufac. Technol. 14, 818-823 (1991)
[24] Peirce, D.; Shih, C. F.; Needleman, A.: A tangent modulus method for rate dependent solids, Comput. struct. 18, 875-887 (1984) · Zbl 0531.73057 · doi:10.1016/0045-7949(84)90033-6
[25] Roy, S.; Wang, Y.; Park, S.; Liechti, K. M.: Cohesive layer modeling of time-dependent debond growth in aggressive environments, J. eng. Mater. technol. 128, 11-17 (2006)
[26] Saulnier, F.; Ondarcuhu, T.; Aradian, A.; Raphael, E.: Adhesion between a viscoelastic material and a solid surface, Macromolecules 37, 1067-1075 (2004)
[27] Shih, C. F.; Asaro, R. J.: Elastic – plastic analysis of cracks on bimaterial interfaces: part I - small scale yielding, J. appl. Mech. 110, 299-316 (1988)
[28] Shih, C. F.: Cracks on bimaterial interfaces: elasticity and plasticity aspects, Mater. sci. Eng. 143, 77-90 (1991)
[29] Shih, C. F.; Xia, L.: Modelling crack growth resistance using computational cells with microstructurally-based length scale, Astm stp 1244, 163-190 (1995)
[30] Steenbrink, A. C.; Van Der Giessen, E.; Wu, P. D.: Void growth in glassy polymers, J. mech. Phys. solids 45, 405-437 (1997)
[31] Tang, S.; Guo, T. F.; Cheng, L.: Rate effects on toughness in elastic nonlinear viscous solids, J. mech. Phys. solids (2007) · Zbl 1419.74272
[32] Tang, S.; Guo, T. F.; Cheng, L.: Creep fracture toughness using conventional and cell element approaches, Computat. mater. Sci. (2008)
[33] Tijnenburg, K. G. W.; Seelig, Th.; Van Der Giessen, E.: Successively refined models for crack tip plasticity in polymer blends, Eur. J. Mech. A/solids 24, 740-756 (2005) · Zbl 1125.74379 · doi:10.1016/j.euromechsol.2005.04.005
[34] Tvergaard, V.; Hutchinson, J. W.: The influence of plasticity on mixed mode interface toughness, J. mech. Phys. solids 41, 1119-1135 (1993) · Zbl 0775.73219 · doi:10.1016/0022-5096(93)90057-M
[35] Wu, P. D.; Van Der Giessen, E.: On improved network models for rubber elasticity and their application to orientation hardening in glassy polymers, J. mech. Phys. solids 41, 427-456 (1993) · Zbl 0825.73103 · doi:10.1016/0022-5096(93)90043-F
[36] Xia, L.; Shih, C. F.: Ductile crack growth – I: a numerical study using computational cells with microstructurally-based length scales, J. mech. Phys. solids 43, 233-259 (1995) · Zbl 0879.73047 · doi:10.1016/0022-5096(94)00064-C
[37] Xia, L.; Shih, C. F.: Ductile crack growth – II: Void nucleation and geometry effects on macroscopic fracture behavior, J. mech. Phys. solids 43, 1953-1981 (1995) · Zbl 0919.73257 · doi:10.1016/0022-5096(95)00063-O
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.