×

Discrete velocity models for mixtures without nonphysical collision invariants. (English) Zbl 1355.82038

Summary: An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. It is a well-known fact that DVMs can also have extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and so without spurious ones, is called normal. For binary mixtures also the concept of supernormal DVMs was introduced, meaning that in addition to the DVM being normal, the restriction of the DVM to any single species also is normal. Here we introduce generalizations of this concept to DVMs for multicomponent mixtures. We also present some general algorithms for constructing such models and give some concrete examples of such constructions. One of our main results is that for any given number of species, and any given rational mass ratios we can construct a supernormal DVM. The DVMs are constructed in such a way that for half-space problems, as the Milne and Kramers problems, but also nonlinear ones, we obtain similar structures as for the classical discrete Boltzmann equation for one species, and therefore we can apply obtained results for the classical Boltzmann equation.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
35Q20 Boltzmann equations
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aoki, K., Bardos, C., Takata, S.: Knudsen layer for gas mixtures. J. Stat. Phys. 112, 629-655 (2003) · Zbl 1124.82314 · doi:10.1023/A:1023876025363
[2] Bardos, C., Caflisch, R.E., Nicolaenko, B.: The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Commun. Pure Appl. Math. 39, 323-352 (1986) · Zbl 0612.76088 · doi:10.1002/cpa.3160390304
[3] Bardos, C., Golse, F., Sone, Y.: Half-space problems for the Boltzmann equation: a survey. J. Stat. Phys. 124, 275-300 (2006) · Zbl 1125.82013 · doi:10.1007/s10955-006-9077-z
[4] Bardos, C., Yang, X.: The classification of well-posed kinetic boundary layer for hard sphere gas mixtures. Commun. Partial Differ. Equ. 37, 1286-1314 (2012) · Zbl 1276.35060 · doi:10.1080/03605302.2011.624149
[5] Bernhoff, N.: On half-space problems for the linearized discrete Boltzmann equation. Riv. Mat. Univ. Parma 9, 73-124 (2008) · Zbl 1178.82061
[6] Bernhoff, N.: On half-space problems for the weakly non-linear discrete Boltzmann equation. Kinet. Relat. Models 3, 195-222 (2010) · Zbl 1193.82032 · doi:10.3934/krm.2010.3.195
[7] Bernhoff, N.: Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures. Kinet. Relat. Models 5, 1-19 (2012) · Zbl 1252.82077 · doi:10.3934/krm.2012.5.1
[8] Bird, G.A.: Molecular Gas Dynamics. Clarendon-Press, Oxford (1976)
[9] Bobylev, A.V., Bernhoff, N.: Discrete velocity models and dynamical systems. In: Bellomo, N., Gatignol, R. (eds.) Lecture Notes on the Discretization of the Boltzmann Equation, pp. 203-222. World Scientific, Singapore (2003) · Zbl 1055.82018
[10] Bobylev, A.V., Cercignani, C.: Discrete velocity models for mixtures. J. Stat. Phys. 91, 327-341 (1998) · Zbl 0917.76075 · doi:10.1023/A:1023052423760
[11] Bobylev, A.V., Cercignani, C.: Discrete velocity models without non-physical invariants. J. Stat. Phys. 97, 677-686 (1999) · Zbl 0958.82041 · doi:10.1023/A:1004615309058
[12] Bobylev, A.V., Palczewski, A., Schneider, J.: On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Sér. I Math. 320, 639-644 (1995) · Zbl 0834.76078
[13] Bobylev, A.V., Vinerean, M.C.: Construction of discrete kinetic models with given invariants. J. Stat. Phys. 132, 153-170 (2008) · Zbl 1214.82087 · doi:10.1007/s10955-008-9536-9
[14] Bobylev, A.V., Vinerean, M.C., Windfall, A.: Discrete velocity models of the Boltzmann equation and conservation laws. Kinet. Relat. Models 3, 35-58 (2010) · Zbl 1186.82068 · doi:10.3934/krm.2010.3.35
[15] Broadwell, J.E.: Shock structure in a simple discrete velocity gas. Phys. Fluids 7, 1243-1247 (1964) · Zbl 0123.21102 · doi:10.1063/1.1711368
[16] Cabannes, H.: The discrete Boltzmann equation [1980 (2003)]. Lecture notes given at theUniversity of California at Berkeley, 1980, revised with R. Gatignol and L-S. Luo (2003) · Zbl 0612.76088
[17] Cercignani, C.: The Boltzmann Equation and Its Applications. Springer-Verlag, New York (1988) · Zbl 0646.76001 · doi:10.1007/978-1-4612-1039-9
[18] Cercignani, C.: Rarefied Gas Dynamics. Cambridge University Press, Cambridge (2000) · Zbl 0961.76002
[19] Cercignani, C., Cornille, H.: Shock waves for a discrete velocity gas mixture. J. Stat. Phys. 99, 115-140 (2000) · Zbl 0972.82072 · doi:10.1023/A:1018692522765
[20] Cornille, H., Cercignani, C.: A class of planar discrete velocity models for gas mixtures. J. Stat. Phys. 99, 967-991 (2000) · Zbl 0959.82023 · doi:10.1023/A:1018603831215
[21] Cornille, H., Cercignani, C.: Large size planar discrete velocity models for gas mixtures. J. Phys. A 34, 2985-2998 (2001) · Zbl 0995.82512 · doi:10.1088/0305-4470/34/14/306
[22] Coron, F., Golse, F., Sulem, C.: A classification of well-posed kinetic layer problems. Commun. Pure Appl. Math. 41, 409-435 (1988) · Zbl 0632.76088 · doi:10.1002/cpa.3160410403
[23] Fainsilber, L., Kurlberg, P., Wennberg, B.: Lattice points on circles and discrete velocity models for the Boltzmann equation. SIAM J. Math. Anal. 37, 1903-1922 (2006) · Zbl 1141.11046 · doi:10.1137/040618916
[24] Gatignol, R.: Théorie Cinétique des Gaz à Répartition Discrète de Vitesses. Springer-Verlag, Berlin (1975) · Zbl 0379.76068
[25] Mouhot, C., Pareschi, L., Ray, T.: Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation. Math. Model. Numer. Anal. 47, 1515-1531 (2013) · Zbl 1311.76111 · doi:10.1051/m2an/2013078
[26] Palczewski, A., Schneider, J., Bobylev, A.V.: A consistency result for a discrete-velocity model of the Boltzmann equation. SIAM J. Numer. Anal. 34, 1865-1883 (1997) · Zbl 0895.76083 · doi:10.1137/S0036142995289007
[27] Ukai, S., Yang, T., Yu, S.H.: Nonlinear boundary layers of the Boltzmann equation: I. Existence. Commun. Math. Phys. 236, 373-393 (2003) · Zbl 1041.82017 · doi:10.1007/s00220-003-0822-8
[28] Vedenyapin, V.V.: Velocity inductive method for mixtures. Transp. Theory Stat. Phys. 28, 727-742 (1999) · Zbl 0954.35139 · doi:10.1080/00411459908214525
[29] Vedenyapin, V.V., Amasov, S.A.: Discrete models of the Boltzmann equation for mixtures. Differ. Equ. 36, 1027-1032 (2000) · Zbl 1016.82031 · doi:10.1007/BF02754504
[30] Vedenyapin, V.V., Orlov, Y.N.: Conservation laws for polynomial Hamiltonians and for discrete models of the Boltzmann equation. Theor. Math. Phys. 121, 1516-1523 (1999) · Zbl 0971.81021 · doi:10.1007/BF02557222
[31] Vinerean, M.C.: Discrete Kinetic Models and Conservation Laws. Karlstad University Studies. Ph.D thesis (2005) · Zbl 1232.82014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.