Fukaya, Noriyoshi; Georgiev, Vladimir; Ikeda, Masahiro On stability and instability of standing waves for 2d-nonlinear Schrödinger equations with point interaction. (English) Zbl 07500531 J. Differ. Equations 321, 258-295 (2022). MSC: 35Q55 35B35 PDF BibTeX XML Cite \textit{N. Fukaya} et al., J. Differ. Equations 321, 258--295 (2022; Zbl 07500531) Full Text: DOI OpenURL
Kopylova, Elena Global attractor for 3D Dirac equation with nonlinear point interaction. (English) Zbl 07496923 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 3, Paper No. 27, 44 p. (2022). MSC: 35B40 35B41 35Q41 PDF BibTeX XML Cite \textit{E. Kopylova}, NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 3, Paper No. 27, 44 p. (2022; Zbl 07496923) Full Text: DOI OpenURL
Cuccagna, Scipio; Maeda, Masaya A survey on asymptotic stability of ground states of nonlinear Schrödinger equations. II. (English) Zbl 1475.35313 Discrete Contin. Dyn. Syst., Ser. S 14, No. 5, 1693-1716 (2021). MSC: 35Q55 35B40 PDF BibTeX XML Cite \textit{S. Cuccagna} and \textit{M. Maeda}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 5, 1693--1716 (2021; Zbl 1475.35313) Full Text: DOI arXiv OpenURL
Comech, Andrew; Kopylova, Elena Orbital stability and spectral properties of solitary waves of Klein-Gordon equation with concentrated nonlinearity. (English) Zbl 1478.35080 Commun. Pure Appl. Anal. 20, No. 6, 2187-2209 (2021). MSC: 35C08 35B35 35L15 35L71 PDF BibTeX XML Cite \textit{A. Comech} and \textit{E. Kopylova}, Commun. Pure Appl. Anal. 20, No. 6, 2187--2209 (2021; Zbl 1478.35080) Full Text: DOI OpenURL
Dukhnovskii, S. A. On the rate of stabilization of solutions to the Cauchy problem for the Godunov-Sultangazin system with periodic initial data. (English. Russian original) Zbl 1476.35039 J. Math. Sci., New York 259, No. 3, 349-375 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 165, 88-113 (2019). MSC: 35B40 35B25 35L45 35L60 35Q20 PDF BibTeX XML Cite \textit{S. A. Dukhnovskii}, J. Math. Sci., New York 259, No. 3, 349--375 (2021; Zbl 1476.35039); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 165, 88--113 (2019) Full Text: DOI OpenURL
Adami, Riccardo; Fukuizumi, Reika; Holmer, Justin Scattering for the \(L^2\) supercritical point NLS. (English) Zbl 1457.35064 Trans. Am. Math. Soc. 374, No. 1, 35-60 (2021). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35Q55 35B40 35P25 78A60 PDF BibTeX XML Cite \textit{R. Adami} et al., Trans. Am. Math. Soc. 374, No. 1, 35--60 (2021; Zbl 1457.35064) Full Text: DOI arXiv OpenURL
Komech, Aleksandr I.; Kopylova, Elena A. Attractors of nonlinear Hamiltonian partial differential equations. (English. Russian original) Zbl 1439.35001 Russ. Math. Surv. 75, No. 1, 1-87 (2020); translation from Usp. Mat. Nauk 75, No. 1, 3-94 (2020). MSC: 35-02 35B41 35B40 35C08 35L71 35B06 PDF BibTeX XML Cite \textit{A. I. Komech} and \textit{E. A. Kopylova}, Russ. Math. Surv. 75, No. 1, 1--87 (2020; Zbl 1439.35001); translation from Usp. Mat. Nauk 75, No. 1, 3--94 (2020) Full Text: DOI arXiv OpenURL
Kopylova, Elena; Komech, Alexander Global attractor for 1D Dirac field coupled to nonlinear oscillator. (English) Zbl 1437.35600 Commun. Math. Phys. 375, No. 1, 573-603 (2020). MSC: 35Q41 35B41 35C08 35B40 42A38 35B32 35B05 35P30 PDF BibTeX XML Cite \textit{E. Kopylova} and \textit{A. Komech}, Commun. Math. Phys. 375, No. 1, 573--603 (2020; Zbl 1437.35600) Full Text: DOI arXiv OpenURL
Telksnys, T.; Navickas, Z.; Marcinkevicius, R.; Ragulskis, M. Existence of solitary solutions in systems of PDEs with multiplicative polynomial coupling. (English) Zbl 1426.35082 Appl. Math. Comput. 320, 380-388 (2018). MSC: 35G20 35A01 35C08 PDF BibTeX XML Cite \textit{T. Telksnys} et al., Appl. Math. Comput. 320, 380--388 (2018; Zbl 1426.35082) Full Text: DOI OpenURL
Dukhnovskii, S. A. On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data. (Russian. English summary) Zbl 1413.35302 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 21, No. 1, 7-41 (2017). MSC: 35L45 35L60 35Q20 PDF BibTeX XML Cite \textit{S. A. Dukhnovskii}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 21, No. 1, 7--41 (2017; Zbl 1413.35302) Full Text: DOI MNR OpenURL
Radkevich, E. V.; Vasil’eva, O. A. Generation of chaotic dynamics and local equilibrium for the Carleman equation. (English. Russian original) Zbl 1373.37099 J. Math. Sci., New York 224, No. 5, 764-795 (2017); translation from Probl. Mat. Anal. 88, 143-170 (2017). MSC: 37D45 35F55 35C20 PDF BibTeX XML Cite \textit{E. V. Radkevich} and \textit{O. A. Vasil'eva}, J. Math. Sci., New York 224, No. 5, 764--795 (2017; Zbl 1373.37099); translation from Probl. Mat. Anal. 88, 143--170 (2017) Full Text: DOI OpenURL
Komech, Alexander Attractors of Hamilton nonlinear PDEs. (English) Zbl 1382.35049 Discrete Contin. Dyn. Syst. 36, No. 11, 6201-6256 (2016). Reviewer: Jauber C. Oliveira (Florianopolis) MSC: 35B41 35L70 35Q40 PDF BibTeX XML Cite \textit{A. Komech}, Discrete Contin. Dyn. Syst. 36, No. 11, 6201--6256 (2016; Zbl 1382.35049) Full Text: DOI OpenURL
Ortoleva, Cecilia; Noja, Diego; Adami, Riccardo Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: neutral modes. (English) Zbl 1351.35187 Discrete Contin. Dyn. Syst. 36, No. 11, 5837-5879 (2016). MSC: 35Q55 35Q51 37K40 35B40 35B35 PDF BibTeX XML Cite \textit{C. Ortoleva} et al., Discrete Contin. Dyn. Syst. 36, No. 11, 5837--5879 (2016; Zbl 1351.35187) Full Text: DOI OpenURL
Kopylova, Elena On global well-posedness for Klein-Gordon equation with concentrated nonlinearity. (English) Zbl 1350.35103 J. Math. Anal. Appl. 443, No. 2, 1142-1157 (2016). MSC: 35L15 35A01 35A02 PDF BibTeX XML Cite \textit{E. Kopylova}, J. Math. Anal. Appl. 443, No. 2, 1142--1157 (2016; Zbl 1350.35103) Full Text: DOI arXiv OpenURL
Tentarelli, Lorenzo NLS ground states on metric graphs with localized nonlinearities. (English) Zbl 1321.05278 J. Math. Anal. Appl. 433, No. 1, 291-304 (2016). MSC: 05C85 05C12 05C35 35Q55 PDF BibTeX XML Cite \textit{L. Tentarelli}, J. Math. Anal. Appl. 433, No. 1, 291--304 (2016; Zbl 1321.05278) Full Text: DOI arXiv OpenURL
Radkevich, E. V. The Bloch principle for \(L_2(R)\) stabilization of solutions to the Cauchy problem for the Carleman equation. (English. Russian original) Zbl 1337.35082 J. Math. Sci., New York 210, No. 5, 677-735 (2015); translation from Probl. Mat. Anal. 82, 111-163 (2015). MSC: 35L45 35L60 35B25 PDF BibTeX XML Cite \textit{E. V. Radkevich}, J. Math. Sci., New York 210, No. 5, 677--735 (2015; Zbl 1337.35082); translation from Probl. Mat. Anal. 82, 111--163 (2015) Full Text: DOI OpenURL
Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego; Teta, Alessandro The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit. (English) Zbl 1303.81072 Lett. Math. Phys. 104, No. 12, 1557-1570 (2014). MSC: 81Q05 35B25 35B35 35Q55 PDF BibTeX XML Cite \textit{C. Cacciapuoti} et al., Lett. Math. Phys. 104, No. 12, 1557--1570 (2014; Zbl 1303.81072) Full Text: DOI arXiv OpenURL
Babich, V. M.; Budylin, A. M.; Dmitrieva, L. A.; Fedotov, A. A.; Komech, A. I.; Levin, S. B.; Perel, M. V.; Rybakina, E. A.; Sukhanov, V. V. On the mathematical work of Vladimir Savel’evich Buslaev. (English. Russian original) Zbl 1304.35001 St. Petersbg. Math. J. 25, No. 2, 151-174 (2014); translation from Algebra Anal. 25, No. 2, 3-36 (2013). MSC: 35-00 01A70 PDF BibTeX XML Cite \textit{V. M. Babich} et al., St. Petersbg. Math. J. 25, No. 2, 151--174 (2014; Zbl 1304.35001); translation from Algebra Anal. 25, No. 2, 3--36 (2013) Full Text: DOI OpenURL
Adami, Riccardo; Noja, Diego; Ortoleva, Cecilia Orbital and asymptotic stability for standing waves of a nonlinear Schrödinger equation with concentrated nonlinearity in dimension three. (English) Zbl 1322.35122 J. Math. Phys. 54, No. 1, 013501, 33 p. (2013). Reviewer: M. Plum (Karlsruhe) MSC: 35Q55 35J10 35B35 PDF BibTeX XML Cite \textit{R. Adami} et al., J. Math. Phys. 54, No. 1, 013501, 33 p. (2013; Zbl 1322.35122) Full Text: DOI arXiv OpenURL
Kopylova, E. A. Asymptotic stability of solitons for nonlinear hyperbolic equations. (English. Russian original) Zbl 1275.35069 Russ. Math. Surv. 68, No. 2, 283-334 (2013); translation from Usp. Mat. Nauk. 68, No. 2, 91-144 (2013). Reviewer: Marie Kopáčková (Praha) MSC: 35C08 35L71 35Q56 35B40 37K40 35B35 PDF BibTeX XML Cite \textit{E. A. Kopylova}, Russ. Math. Surv. 68, No. 2, 283--334 (2013; Zbl 1275.35069); translation from Usp. Mat. Nauk. 68, No. 2, 91--144 (2013) Full Text: DOI OpenURL
Kopylova, E. A. On asymptotic stability of solitary waves in discrete Klein-Gordon equation coupled to a nonlinear oscillator. (English) Zbl 1207.39021 Appl. Anal. 89, No. 9, 1467-1492 (2010). Reviewer: Fei Xue (Hartford) MSC: 39A30 39A14 39A12 35Q40 81Q05 37K10 PDF BibTeX XML Cite \textit{E. A. Kopylova}, Appl. Anal. 89, No. 9, 1467--1492 (2010; Zbl 1207.39021) Full Text: DOI OpenURL
Komech, A. I.; Merzon, A. E. Scattering in the nonlinear Lamb system. (English) Zbl 1228.81264 Phys. Lett., A 373, No. 11, 1005-1010 (2009). MSC: 81U30 81Q05 81T30 35Q55 34L25 PDF BibTeX XML Cite \textit{A. I. Komech} and \textit{A. E. Merzon}, Phys. Lett., A 373, No. 11, 1005--1010 (2009; Zbl 1228.81264) Full Text: DOI OpenURL
Komech, A. I.; Merzon, A. E. On asymptotic completeness for scattering in the nonlinear Lamb system. (English) Zbl 1202.81200 J. Math. Phys. 50, No. 2, 023514, 10 p. (2009). MSC: 81U05 35P25 PDF BibTeX XML Cite \textit{A. I. Komech} and \textit{A. E. Merzon}, J. Math. Phys. 50, No. 2, 023514, 10 p. (2009; Zbl 1202.81200) Full Text: DOI Link OpenURL
Kopylova, E. A. On the asymptotic stability of solitary waves in the discrete Schrödinger equation coupled to a nonlinear oscillator. (English) Zbl 1167.35515 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 7-8, 3031-3046 (2009). MSC: 35Q55 37K40 39A12 PDF BibTeX XML Cite \textit{E. A. Kopylova}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 7--8, 3031--3046 (2009; Zbl 1167.35515) Full Text: DOI Link OpenURL
Kopylova, E. A. Existence of solitary waves for the discrete Schrödinger equation coupled to a nonlinear oscillator. (English) Zbl 1186.35205 Russ. J. Math. Phys. 15, No. 4, 487-492 (2008). MSC: 35Q55 35C08 35B40 35B35 PDF BibTeX XML Cite \textit{E. A. Kopylova}, Russ. J. Math. Phys. 15, No. 4, 487--492 (2008; Zbl 1186.35205) Full Text: DOI arXiv OpenURL
Stuart, David M. A. Analysis of the adiabatic limit for solitons in classical field theory. (English) Zbl 1130.70013 Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 463, No. 2087, 2753-2781 (2007). MSC: 70S15 35Q51 35Q53 PDF BibTeX XML Cite \textit{D. M. A. Stuart}, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 463, No. 2087, 2753--2781 (2007; Zbl 1130.70013) Full Text: DOI OpenURL