×

Deagglomeration of cohesive particles by turbulence. (English) Zbl 1461.76198

Summary: We present a numerical study analysing the breakup of a single cohesive particle aggregate in turbulence. Solid particles with diameters smaller than the Kolmogorov length scale \((d_p<\eta)\) are initially aggregated into a spherical ‘clump’ of diameter \(D>\eta\) and placed in homogeneous isotropic turbulence. Parameters are chosen relevant to dust or powder suspended in air such that cohesion due to van der Waals is important. Simulations are performed using an Eulerian-Lagrangian framework that models two-way coupling between the fluid and solid phases and resolves particle-particle interactions. Aggregate breakup is investigated for different adhesion numbers \(Ad\), Taylor microscale Reynolds numbers \(Re_\lambda\) and non-dimensional clump sizes \(D/d_p\). The intermittency of turbulence is found to play a key role on the early stage breakup process, which can be characterized by a turbulent adhesion number \(Ad_\eta\) that relates the potential energy of the van der Waals force to turbulent shear stresses. A scaling analysis shows that the time rate of breakup for each case collapses when scaled by \(Ad_\eta\) and an aggregate Reynolds number proportional to \(D\). A phenomenological model of the breakup process is proposed that acts as a granular counterpart to the Taylor analogy breakup (TAB) model commonly used for droplet breakup. Such a model is useful for predicting particle breakup in coarse-grained simulation frameworks, such as Reynolds-averaged Navier-Stokes, where relevant spatial and temporal scales are not resolved.

MSC:

76F05 Isotropic turbulence; homogeneous turbulence
76T20 Suspensions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, T.B. & Jackson, R.1967Fluid mechanical description of fluidized beds. Equations of motion. Ind. Engng Chem. Fundam.6 (4), 527-539.
[2] Bäbler, M.U., Morbidelli, M. & Baldyga, J.2008Modelling the breakup of solid aggregates in turbulent flows. J. Fluid Mech.612, 261-289. · Zbl 1151.76605
[3] Bache, D.H.2004Floc rupture and turbulence: a framework for analysis. Chem. Engng Sci.59 (12), 2521-2534.
[4] Batcho, P.F., Moller, J.C., Padova, C. & Dunn, M.G.1987Interpretation of gas turbine response due to dust ingestion. ASME: J. Engng Gas Turbines Power109, 344-352.
[5] Begat, P., Morton, D.A.V., Staniforth, J.N. & Price, R.2004The cohesive-adhesive balances in dry powder inhaler formulations II: influence on fine particle delivery characteristics. Pharmaceut. Res.21 (10), 1826-1833.
[6] Bocquet, L., Losert, W., Schalk, D., Lubensky, T.C. & Gollub, J.P.2001Granular shear flow dynamics and forces: experiment and continuum theory. Phys. Rev. E65 (1), 011307.
[7] Bons, J.P., Prenter, R. & Whitaker, S.2017A simple physics-based model for particle rebound and deposition in turbomachinery. Trans. ASME: J. Turbomach.139 (8), 081009.
[8] Breuer, M. & Almohammed, N.2015Modeling and simulation of particle agglomeration in turbulent flows using a hard-sphere model with deterministic collision detection and enhanced structure models. Intl J. Multiphase Flow73, 171-206.
[9] Capecelatro, J. & Desjardins, O.2013An Euler-Lagrange strategy for simulating particle-laden flows. J. Comput. Phys.238, 1-31. · Zbl 1286.76142
[10] Capecelatro, J., Pepiot, P. & Desjardins, O.2014Numerical characterization and modeling of particle clustering in wall-bounded vertical risers. Chem. Engng J.245, 295-310.
[11] Chen, S. & Li, S.2020 Collision-induced breakage of agglomerates in homogenous isotropic turbulence laden with adhesive particles. arXiv:2004.09726.
[12] Chen, S., Li, S. & Marshall, J.S.2019Exponential scaling in early-stage agglomeration of adhesive particles in turbulence. Phys. Rev. Fluids4 (2), 024304.
[13] Cocco, R., Shaffer, F., Hays, R., Karri, S.B.R. & Knowlton, T.2010Particle clusters in and above fluidized beds. Powder Technol.203 (1), 3-11.
[14] Cundall, P.A. & Strack, O.D.L.1979A discrete numerical model for granular assemblies. Gèotechnique29 (1), 47-65.
[15] Derjaguin, B.V., Muller, V.M. & Toporov, Yu.P.1975Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci.53 (2), 314-326.
[16] Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H.2008High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys.227 (15), 7125-7159. · Zbl 1201.76139
[17] Dizaji, F.F. & Marshall, J.S.2017On the significance of two-way coupling in simulation of turbulent particle agglomeration. Powder Technol.318, 83-94.
[18] Dizaji, F.F., Marshall, J.S. & Grant, J.R.2019Collision and breakup of fractal particle agglomerates in a shear flow. J. Fluid Mech.862, 592-623. · Zbl 1415.76676
[19] Dunn, M.G., Baran, A.J. & Miatech, J.1996Operation of gas turbine engines in volcanic ash clouds. ASME: J. Engng Gas Turbines Power118, 724-731.
[20] Fanelli, M., Feke, D.L. & Manas-Zloczower, I.2006aPrediction of the dispersion of particle clusters in the nano-scale—Part II: unsteady shearing responses. Chem. Engng Sci.61 (15), 4944-4956.
[21] Fanelli, M., Feke, D.L. & Manas-Zloczower, I.2006bPrediction of the dispersion of particle clusters in the nano-scale—Part I: steady shearing responses. Chem. Engng Sci.61 (2), 473-488.
[22] Flesch, J.C., Spicer, P.T. & Pratsinis, S.E.1999Laminar and turbulent shear-induced flocculation of fractal aggregates. AIChE J.45 (5), 1114-1124.
[23] Forsyth, P.R., Gillespie, D.R.H. & Mcgilvray, M.2018Development and applications of a coupled particle deposition-dynamic mesh morphing approach for the numerical simulation of gas turbine flows. Trans. ASME: J. Engng Gas Turbines Power140 (2), 022603.
[24] Friedlander, S.K.2000Smoke, Dust, and Haze, vol. 198. Oxford University Press.
[25] Grant, G. & Tabakoff, W.1975Erosion prediction in turbomachinery resulting from environmental solid particles. J. Aircraft12 (5), 471-478.
[26] Gu, Y., Ozel, A. & Sundaresan, S.2016A modified cohesion model for CFD-DEM simulations of fluidization. Powder Technol.296, 17-28.
[27] Hamaker, H.C.1937The London—van der Waals attraction between spherical particles. Physica4 (10), 1058-1072.
[28] Hamed, A., Tabakoff, W.C. & Wenglarz, R.V.2006Erosion and deposition in turbomachinery. J. Propul. Power22 (2), 350-360.
[29] Higashitani, K., Iimura, K. & Sanda, H.2001Simulation of deformation and breakup of large aggregates in flows of viscous fluids. Chem. Engng Sci.56 (9), 2927-2938.
[30] Ho, C.A. & Sommerfeld, M.2002Modelling of micro-particle agglomeration in turbulent flows. Chem. Engng Sci.57 (15), 3073-3084.
[31] Van Der Hoef, M.A., Van Sint Annaland, M., Deen, N.G. & Kuipers, J.2008Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech.40, 47-70. · Zbl 1231.76327
[32] Jarvis, P., Jefferson, B., Gregory, J. & Parsons, S.A.2005A review of floc strength and breakage. Water Res.39 (14), 3121-3137.
[33] Johnson, K.L. & Greenwood, J.A.1997An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci.192 (2), 326-333.
[34] Johnson, K.L., Kendall, K. & Roberts, A.D.1971Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A324 (1558), 301-313.
[35] Kosinski, P. & Hoffmann, A.C.2010An extension of the hard-sphere particle-particle collision model to study agglomeration. Chem. Engng Sci.65 (10), 3231-3239.
[36] Kousaka, Y., Okuyama, K., Shimizu, A. & Yoshida, T.1979Dispersion mechanism of aggregate particles in air. J. Chem. Engng Japan12 (2), 152-159.
[37] Liu, L.F., Zhang, Z.P. & Yu, A.B.1999Dynamic simulation of the centripetal packing of mono-sized spheres. Physica A268 (3-4), 433-453.
[38] Liu, P. & Hrenya, C.M.2018Cluster-induced deagglomeration in dilute gravity-driven gas-solid flows of cohesive grains. Phys. Rev. Lett.121 (23), 238001.
[39] Lundgren, T.S.2003 Linearly forced isotropic turbulence. Tech. Rep. 461-473. Center for Turbulence Research.
[40] Mahecha-Botero, A., Grace, J.R., Elnashaie, S. & Lim, C.J.2009Advances in modeling of fluidized-bed catalytic reactors: a comprehensive review. Chem. Engng Commun.196 (11), 1375-1405.
[41] Mallouppas, G., George, W.K. & Van Wachem, B.G.M.2013New forcing scheme to sustain particle-laden homogeneous and isotropic turbulence. Phys. Fluids25 (8), 083304.
[42] Marshall, J.S.2009Discrete-element modeling of particulate aerosol flows. J. Comput. Phys.228 (5), 1541-1561. · Zbl 1410.76331
[43] Marshall, J.S. & Li, S.2014Adhesive Particle Flow. Cambridge University Press.
[44] Mccave, I.N.1984Erosion, transport and deposition of fine-grained marine sediments. Geol. Soc. Lond. Spec. Publ.15 (1), 35-69.
[45] Mikami, T., Kamiya, H. & Horio, M.1998Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Engng Sci.53 (10), 1927-1940.
[46] Mousel, J.A. & Marshall, J.S.2010Aggregate growth and breakup in particulate suspension flow through a micro-nozzle. Microfluid Nanofluid8 (2), 171-186.
[47] Pan, H., Chen, X.-Z., Liang, X.-F., Zhu, L.-T. & Luo, Z.-H.2016CFD simulations of gas-liquid-solid flow in fluidized bed reactors—a review. Powder Technol.299, 235-258.
[48] Pandya, J.D. & Spielman, L.A.1983Floc breakage in agitated suspensions: effect of agitation rate. Chem. Engng Sci.38 (12), 1983-1992.
[49] Pierce, C.D.2001 Progress-variable approach for large-eddy simulation of turbulent combustion. PhD thesis, Citeseer.
[50] Roy, S., Luding, S. & Weinhart, T.2017A general (ized) local rheology for wet granular materials. New J. Phys.19 (4), 043014.
[51] Ruan, X., Chen, S. & Li, S.2020Structural evolution and breakage of dense agglomerates in shear flow and Taylor-Green vortex. Chem. Engng Sci.211, 115261.
[52] Rybalko, M., Loth, E. & Lankford, D.2012A Lagrangian particle random walk model for hybrid RANS/LES turbulent flows. Powder Technol.221, 105-113.
[53] Sacco, C., Bowen, C., Lundgreen, R., Bons, J.P., Ruggiero, E., Allen, J. & Bailey, J.2018Dynamic similarity in turbine deposition testing and the role of pressure. Trans. ASME: J. Engng Gas Turbines Power140 (10), 102605.
[54] Sonntag, R.C. & Russel, W.B.1987Structure and breakup of flocs subjected to fluid stresses: II. Theory. J. Colloid Interface Sci.115 (2), 378-389.
[55] Sun, R., Xiao, H. & Sun, H.2018Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations. Adv. Water Resour.111, 406-422.
[56] Syamlal, M., Rogers, W. & O’Brien, T.J.1993 Mfix documentation theory guide. Tech. Rep. USDOE Morgantown Energy Technology Center, WV (United States).
[57] Taylor, G.I.1949 The shape and acceleration of a drop in a high speed air stream. Collected Papers III. pp. 457-464.
[58] Tenneti, S., Garg, R. & Subramaniam, S.2011Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Intl J. Multiphase Flow37 (9), 1072-1092.
[59] Uhlmann, M.2008Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids20 (5), 053305. · Zbl 1182.76785
[60] Vo, T.-T., Mutabaruka, P., Nezamabadi, S., Delenne, J.-Y. & Radjai, F.2020Evolution of wet agglomerates inside inertial shear flow of dry granular materials. Phys. Rev. E101, 032906.
[61] Vowinckel, B., Biegert, E., Luzzatto-Fegiz, P. & Meiburg, E.2019aConsolidation of freshly deposited cohesive and noncohesive sediment: particle-resolved simulations. Phys. Rev. Fluids4 (7), 074305. · Zbl 1415.76700
[62] Vowinckel, B., Withers, J., Luzzatto-Fegiz, P. & Meiburg, E.2019bSettling of cohesive sediment: particle-resolved simulations. J. Fluid Mech.858, 5-44. · Zbl 1415.76700
[63] Van Wachem, B., Thalberg, K., Nguyen, D., De Juan, L.M., Remmelgas, J. & Niklasson- Bjorn, I.2020Analysis, modelling and simulation of the fragmentation of agglomerates. Chem. Engng Sci.227, 115944.
[64] Wang, F.-J., Zhu, J.-X. & Beeckmans, J.M.2000Pressure gradient and particle adhesion in the pneumatic transport of cohesive fine powders. Intl J. Multiphase Flow26 (2), 245-265. · Zbl 1137.76775
[65] Weiler, C., Wolkenhauer, M., Trunk, M. & Langguth, P.2010New model describing the total dispersion of dry powder agglomerates. Powder Technol.203 (2), 248-253.
[66] Wengeler, R. & Nirschl, H.2007Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates. J. Colloid Interface Sci.306 (2), 262-273.
[67] Whitaker, S.M., Prenter, R. & Bons, J.P.2015The effect of freestream turbulence on deposition for nozzle guide vanes. Trans. ASME: J. Turbomach.137 (12), 121001.
[68] Yang, J., Wu, C.-Y. & Adams, M.2013DEM analysis of particle adhesion during powder mixing for dry powder inhaler formulation development. Granul. Matt.15 (4), 417-426.
[69] Yang, J., Wu, C.-Y. & Adams, M.2015Numerical modelling of agglomeration and deagglomeration in dry powder inhalers: a review. Curr. Pharm. Design21 (40), 5915-5922.
[70] Yao, Y. & Capecelatro, J.2018Competition between drag and Coulomb interactions in turbulent particle-laden flows using a coupled-fluid-Ewald-summation based approach. Phys. Rev. Fluids3 (3), 034301.
[71] Yao, Y. & Capecelatro, J.2019Electrohydrodynamic generation of atmospheric turbulence. Phys. Rev. Fluids4 (12), 123701.
[72] Zeidan, M., Xu, B.H., Jia, X. & Williams, R.A.2007Simulation of aggregate deformation and breakup in simple shear flows using a combined continuum and discrete model. Chem. Engng Res. Des.85 (12), 1645-1654.
[73] Zhao, K., Vowinckel, B., Hsu, T.-J., Köllner, T., Bai, B. & Meiburg, E.2020An efficient cellular flow model for cohesive particle flocculation in turbulence. J. Fluid Mech.889, R3. · Zbl 1460.76866
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.