×

zbMATH — the first resource for mathematics

The local recognition of reflection graphs of spherical Coxeter groups. (English) Zbl 1231.05181
Summary: Based on the third author’s thesis [Local recognition of reflection graphs on Coxeter groups, (2008; arXiv.org/abs/arXiv:0805.2403)] in this article we complete the local recognition of commuting reflection graphs of spherical Coxeter groups arising from irreducible crystallographic root systems.
MSC:
05C60 Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.)
20F55 Reflection and Coxeter groups (group-theoretic aspects)
Software:
SageMath
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Altmann, K.: Centralisers of fundamental subgroups. PhD thesis, Technische Universität Darmstadt (2007) · Zbl 1175.51001
[2] Bennett, C. D.; Gramlich, R.; Hoffman, C.; Shpectorov, S., Odd-dimensional orthogonal groups as amalgams of unitary groups, part 1: general simple connectedness, J. Algebra, 312, 426-444, (2007) · Zbl 1136.20037
[3] Brown, M.; Connelly, R., On graphs with a constant link, II, Discrete Math., 11, 199-232, (1975) · Zbl 0304.05102
[4] Buekenhout, F.; Hubaut, X., Locally polar spaces and related rank 3 groups, J. Algebra, 45, 391-434, (1977) · Zbl 0351.05021
[5] Bourbaki, N.: Elements of Mathematics. Lie Groups and Lie Algebras: Chapters 4-6. Springer, Berlin (2002) · Zbl 0983.17001
[6] Cohen, A. M.; Kantor, W. M. (ed.); Liebler, R. A. (ed.); Payne, S. E. (ed.); Shult, E. E. (ed.), Local recognition of graphs, buildings, and related geometries, 85-94, (1990), New York
[7] Cohen, A. M.; Cuypers, H.; Gramlich, R., Local recognition of non-incident point-hyperplane graphs, Combinatorica, 25, 271-296, (2005) · Zbl 1100.05080
[8] Cohen, A. M.; Shult, E. E., Affine polar spaces, Geom. Dedicata, 35, 43-76, (1990) · Zbl 0755.51004
[9] Cuypers, H.; Pasini, A., Locally polar geometries with affine planes, European J. Combin., 13, 39-57, (1992) · Zbl 0749.51005
[10] Gorenstein, D., Lyons, R., Solomon, R.: The Classification of the Finite Simple Groups. AMS, Providence (1994) · Zbl 0816.20016
[11] Gramlich, R.: Developments in finite Phan theory. Innov. Incidence Geom. To appear · Zbl 1236.20035
[12] Gramlich, R.; Hoffman, C.; Shpectorov, S., A Phan-type theorem for Sp \((2n,q),\) J. Algebra, 264, 358-384, (2003) · Zbl 1026.20006
[13] Gramlich, R., Witzel, S.: The sphericity of the Phan geometries of type \(B\_{}\{n\}\) and \(C\_{}\{n\}\) and the Phan-type theorem of type \(F\_{}\{4\}\). Submitted. arXiv:0901.1156 · Zbl 1280.51006
[14] Hall, J. I., Locally Petersen graphs, J. Graph Theory, 4, 173-187, (1980) · Zbl 0407.05041
[15] Hall, J. I., Graphs with constant link and small degree or order, J. Graph Theory, 8, 419-444, (1985) · Zbl 0582.05049
[16] Hall, J. I., A local characterization of the Johnson scheme, Combinatorica, 7, 77-85, (1987) · Zbl 0653.05019
[17] Harary, F.: Graph Theory. Westview Press (1994) · Zbl 0182.57702
[18] Hall, J. I.; Shult, E. E., Locally cotriangular graphs, Geom. Dedicata, 18, 113-159, (1985) · Zbl 0578.05058
[19] Humphreys, J. E., Remarks on “A theorem on special linear groups”, J. Algebra, 22, 316-318, (1972) · Zbl 0237.20045
[20] Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1992) · Zbl 0768.20016
[21] Mullineux, G., A characterization of \(A\_{}\{n\}\) by centralizers of short involutions, Quart. J. Math. Oxford Ser., 29, 213-220, (1978) · Zbl 0381.20011
[22] Pasechnik, D. V., Geometric characterization of the sporadic groups Fi_{22}, Fi_{23}, and Fi_{24}, J. Combin. Theory Ser. A, 68, 100-114, (1994) · Zbl 0808.05060
[23] Phan, K.-W., A theorem on special linear groups, J. Algebra, 16, 509-518, (1970) · Zbl 0222.20014
[24] Phan, K.-W., On groups genererated by three-dimensional special unitary groups, I, J. Austral. Math. Soc. Ser. A, 23, 67-77, (1977) · Zbl 0369.20026
[25] Phan, K.-W., On groups genererated by three-dimensional special unitary groups, II, J. Austral. Math. Soc. Ser. A, 23, 129-146, (1977) · Zbl 0381.20034
[26] SAGE Mathematical Software: Version 2.8. http://www.sagemath.org (2007)
[27] Shult, E. E., Groups, polar spaces and related structures, No. 57, 130-161, (1974), Amsterdam · Zbl 0308.20038
[28] Straub, A.: Local recognition of reflection graphs on Coxeter groups. Master’s thesis, Technische Universität Darmstadt. arXiv:0805.2403 (2008)
[29] Timmesfeld, F. G., The Curtis-Tits presentation, Adv. Math., 189, 38-67, (2004) · Zbl 1113.20029
[30] Weetman, G., A construction of locally homogeneous graphs, J. London Math. Soc., 50, 68-86, (1994) · Zbl 0805.05081
[31] Weetman, G., Diameter bounds for graphs extensions, J. London Math. Soc., 50, 209-221, (1994) · Zbl 0808.05093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.