×

zbMATH — the first resource for mathematics

Static perfect fluids with Pant-Sah equations of state. (English) Zbl 1162.83314
Summary: We analyze the 3-parameter family of exact, regular, static, spherically symmetric perfect fluid solutions of Einstein’s equations (corresponding to a 2-parameter family of equations of state) due to Pant and Sah and “rediscovered” by Rosquist and by the present author. Except for the Buchdahl solutions which are contained as a limiting case, the fluids have finite radius and are physically realistic for suitable parameter ranges. The equations of state can be characterized geometrically by the property that the 3-metric on the static slices, rescaled conformally with the fourth power of any linear function of the norm of the static Killing vector, has constant scalar curvature. This local property does not require spherical symmetry; in fact it simplifies the proof of spherical symmetry of asymptotically flat solutions which we recall here for the Pant-Sah equations of state. We also consider a model in Newtonian theory with analogous geometric and physical properties, together with a proof of spherical symmetry of the asymptotically flat solutions.

MSC:
83C15 Exact solutions to problems in general relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E. (2003) Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge · Zbl 1057.83004
[2] Rosquist K. (1995) Class. Quantum Grav. 12: 1305 · Zbl 0823.53079
[3] Masood-ul-Alam A.K.M. (2007) Gen. Rel. Grav. 39: 55 · Zbl 1157.83313
[4] Witten E. (1981) Commun. Math. Phys. 80: 381 · Zbl 1051.83532
[5] Parker T., Taubes C. (1982) Commun. Math. Phys. 84: 223 · Zbl 0528.58040
[6] Rendall A., Schmidt B. (1991) Class. Quantum Grav. 8: 985 · Zbl 0724.53055
[7] Schaudt U. (2000) Ann. Henri Poincaré 5: 945
[8] Simon, W.: In: Frauendiener, J., Friedrich, H. (eds.) Lecture Notes in Physics, vol. 604, pp. 223–237. Springer, Berlin (2002) · Zbl 1042.83016
[9] Shiromizu T., Yamada S., Yoshino H. (2006) J. Math. Phys. 47: 112502 · Zbl 1112.83035
[10] Pant D.N., Sah A. (1985) Phys. Rev. D6: 1358
[11] Buchdahl H.A. (1964) Astrophys. J. 140: 1512
[12] Beig R., Simon W. (1991) Lett. Math. Phys. 21: 245 · Zbl 0719.53050
[13] Beig R., Simon W. (1992) Commun. Math. Phys. 144: 373 · Zbl 0760.53043
[14] Simon W. (1994) Gen. Rel. Grav. 26: 97
[15] Delgaty M.S.R, Lake K. (1998) Comp. Phys. Commun. 115: 395 · Zbl 1002.83511
[16] Lake, K.: http://grtensor.phy.queensu.ca/solutions
[17] Rosquist K. (1999) Phys. Rev. D59: 044022
[18] Harrison B.K., Thorne K.S., Wakano M., Wheeler J.A. (1965) Gravitation Theory and Gravitational Collapse. The University of Chicago Press, Chicago
[19] Makino T. (2000) Funkcialaj Ekvacioj 43: 471
[20] Weber, F., Negreiros, R., Rosenfield, P.: Lecture Notes in Physics (to be published). Springer, Berlin. arXiv:0705.2708 · Zbl 1117.85017
[21] Rüster S., Rischke D.H. (2003) Phys. Rev. D49: 045011
[22] Ray S., Bagchi M., Dey J., Dey M. (2006) J. Phys. Conf. Ser. 31: 107
[23] Dey, M., Bombaci, I., Dey, J., Ray, S., Samanta, B.C.: Phys. Lett. 438, 123 (1998); addendum ibid. 447, 352 (1999)
[24] Lee J.M., Parker T H. (1987) Bull. Am. Math. Soc. 17: 37 · Zbl 0633.53062
[25] Simon W. (1993) Class. Quantum Grav. 10: 177
[26] Heinzle M. (2002) Class. Quantum Grav. 19: 2835 · Zbl 1006.83020
[27] Schoen R., Yau S.T. (1981) Commun. Math. Phys. 79: 231 · Zbl 0494.53028
[28] Lindblom L. (1988) J. Math. Phys. 29: 436 · Zbl 0641.76139
[29] Masood-ul-Alam A.K.M. (1988) Class. Quantum Grav. 5: 409
[30] Lindblom L., Masood-ul-Alam A.K.M. (1994) Commun. Math. Phys. 162: 123 · Zbl 0797.53077
[31] Heinzle M., Uggla C. (2003) Annals Phys. 308: 18 · Zbl 1045.85001
[32] Heinzle M., Röhr N., Uggla C. (2003) Class. Quantum Grav. 20: 4567 · Zbl 1053.83013
[33] Kennefick D., O’Murchadha N. (1995) Class. Quantum Grav. 12: 149 · Zbl 0816.53059
[34] Buchdahl H. (1959) Phys. Rev. 116: 1027 · Zbl 0092.20802
[35] Lichtenstein L. (1928) Math. Z. 28: 635 · JFM 54.1035.04
[36] Pohozaev S. (1965) Sov. Math. Dokl. 6: 1408
[37] Gilbarg D., Trudinger N.S. (1983) Elliptic Partial Differential Equations of Second Order, Sect. 3.2. Springer, Berlin · Zbl 0562.35001
[38] Avez A. (1964) Ann. Inst. Henry Poincaré 1: 291
[39] Künzle H.P. (1971) Commun. Math. Phys. 20: 85
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.