×

Weak property \((Y_0)\) and regularity of inductive limits. (English) Zbl 0968.46002

Let \((E_n, t_n)_{n\in\mathbb{N}}\) be an inductive sequence of locally convex spaces, let \((E,t)\) be its inductive limit and assume that \((E,t)\) is Hausdorff. Then \((E,t)\) is said
(a) to be regular, if each bounded set in \((E,t)\) is already contained and bounded in some space \((E_m, t_m)\),
(b) to satisfy the weak property \((Y_0)\) if for each series \(\sum^\infty_{k=1} x_k\) in \((E,t)\) which is weakly unconditionally Cauchy (w.u.c.) there is \(m\in\mathbb{N}\) such that \(\sum^\infty_{k=1} x_k\) is w.u.c. in \((E_m, t_m)\).
The main result of the paper is that \((E, t)\) is regular if and only if \((E, t)\) has the weak property \((Y_0)\). If all the spaces \((E_n, t_n)_{n\in\mathbb{N}}\) are sequentially complete then these properties are also equivalent to the property that for each w.u.c. series \(\sum^\infty_{k=1} x_k\) in \((E,t)\) there is \(m\in\mathbb{N}\) such that for each null-sequence \((\xi_k)_{k\in\mathbb{N}}\) of scalars, the sequence \(\sum^\infty_{k=1} \xi_kx_k\) converges in \((E_m,t_m)\).
Further equivalences are derived under additional hypotheses like: No space \((E_n, t_n)\) contains a copy of \(c_0\) or all \((E_n,t_n)\) are strictly webbed spaces.

MSC:

46A13 Spaces defined by inductive or projective limits (LB, LF, etc.)
46A30 Open mapping and closed graph theorems; completeness (including \(B\)-, \(B_r\)-completeness)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Antosik, P.; Swartz, C., Matrix Methods in Analysis (1985), Springer-Verlag: Springer-Verlag New York, Berlin, Heidelberg, Tokyo · Zbl 0564.46001
[2] Bessaga, C.; Pelczynski, A., On bases and unconditional convergence of series in Banach spaces, Studia Math., 17, 151-164 (1958) · Zbl 0084.09805
[3] Bierstedt, K. D., An introduction to locally convex inductive limits, Functional Analysis and its Applications (1988), World Science: World Science Singapore, p. 35-133 · Zbl 0786.46001
[4] De Wilde, M., Closed Graph Theorem and Webbed Spaces (1978), Pitman: Pitman London, San Francisco, Melbourne · Zbl 0373.46007
[5] Dierolf, P., Une charactérisation des espaces vectoriels complets au sens de Mackey, C. R. Acad. Sci. Paris, 283, 245-248 (1976) · Zbl 0334.46013
[6] Diestel, J., Sequences and Series in Banach Spaces (1984), Springer-Verlag: Springer-Verlag New York, Heidelberg, Berlin
[7] Fernández, C., A note on absolutely summable sequences in (LF)-spaces, Proc. R. Irish Academy, 93A, 97-106 (1993) · Zbl 0790.46002
[8] Horváth, J., Topological Vector Spaces and Distributions (1966), Addison-Wesley: Addison-Wesley Reading · Zbl 0143.15101
[9] Korobeinik, Y. F., Representing systems, Usp. Mat. Nauk., 36, 73-126 (1981)
[10] Köthe, G., Topological Vector Spaces I, II (1969), Springer-Verlag: Springer-Verlag New York, Berlin, Heidelberg, p. 1979
[11] Li, R.; Bu, Q., Locally convex spaces containing no copy of \(c_0\), J. Math. Anal. Appl., 172, 205-211 (1993) · Zbl 0779.46012
[12] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces I (1977), Springer-Verlag: Springer-Verlag New York · Zbl 0362.46013
[13] Melikhov, S. N., Absolutely convergent series in canonical inductive limits, Math. Notes, 39, 475-480 (1986) · Zbl 0631.46004
[14] Melikhov, S. N., Some properties of canonical inductive limits, (Korobeinik, Y. F., Current Problems in Function Theory (1987)), 150-152 · Zbl 0697.46038
[15] Carreras, P. Pérez; Bonet, J., Barrelled Locally Convex Spaces. Barrelled Locally Convex Spaces, North-Holland Math. Stud., 131 (1987) · Zbl 0614.46001
[16] Qiu, J., Dieudonné-Schwartz theorem in inductive limits of metrizable spaces, Proc. Amer. Math. Soc., 92, 255-257 (1984) · Zbl 0563.46005
[17] Qiu, J., Dieudonné-Schwartz theorem in inductive limits of metrizable spaces II, Proc. Amer. Math. Soc., 108, 171-175 (1990) · Zbl 0708.46008
[18] J. Qiu, Local completeness and dual local quasi-completeness, to appear.; J. Qiu, Local completeness and dual local quasi-completeness, to appear. · Zbl 0967.46002
[19] Qiu, J.; Zhang, J., Completeness of (LF)-spaces, J. Math. Study (China), 30, 113-116 (1997) · Zbl 0921.46002
[20] Rolewicz, S., Metric Linear Spaces (1985), Polish Sci. Publ: Polish Sci. Publ Warsaw
[21] Saxon, S. A.; Sánchez Ruiz, L. M., Dual local completeness, Proc. Amer. Math. Soc., 125, 1063-1070 (1997) · Zbl 0870.46001
[22] Swartz, C., The Schur lemma for bounded multiplier convergent series, Math. Ann., 263, 283-288 (1983) · Zbl 0494.40005
[23] Wilansky, A., Modern Methods in Topological Vector Spaces (1978), McGraw-Hill: McGraw-Hill New York · Zbl 0395.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.