×

Sum-of-squares approach to feedback control of laminar wake flows. (English) Zbl 1383.76121

Summary: In this paper a novel nonlinear feedback control design methodology for incompressible fluid flows aiming at the optimisation of long-time averages of flow quantities is presented. It applies to reduced-order finite-dimensional models of fluid flows, expressed as a set of first-order nonlinear ordinary differential equations with the right-hand side being a polynomial function in the state variables and in the controls. The key idea, first discussed in [S. I. Chernyshenko et al., Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 372, No. 2020, Article ID 20130350, 18 p. (2014; Zbl 1353.76021)], is that the difficulties of treating and optimising long-time averages of a cost are relaxed by using the upper/lower bounds of such averages as the objective function. In this setting, control design reduces to finding a feedback controller that optimises the bound, subject to a polynomial inequality constraint involving the cost function, the nonlinear system, the controller itself and a tunable polynomial function. A numerically tractable and efficient approach to the solution of such optimisation problems, based on sum-of-squares techniques and semidefinite programming, is proposed. To showcase the methodology, the mitigation of the fluctuation kinetic energy in the unsteady wake behind a circular cylinder in the laminar regime at \(Re=100\), via controlled angular motions of the surface, is numerically investigated. A compact reduced-order model that resolves the long-term behaviour of the fluid flow and the effects of actuation, is first derived using proper orthogonal decomposition and Galerkin projection. In a full-information setting, feedback controllers are then designed to reduce the long-time average of the resolved kinetic energy associated with the limit cycle. These controllers are then implemented in direct numerical simulations of the actuated flow. Control performance, total energy efficiency and the physical control mechanisms identified are analysed in detail. Key elements of the methodology, implications and future work are finally discussed.

MSC:

76D25 Wakes and jets
76D55 Flow control and optimization for incompressible viscous fluids

Citations:

Zbl 1353.76021
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abergel, F.; Temam, R., On some control problems in fluid mechanics, Theor. Comput. Fluid Dyn., 1, 6, 303-325, (1990) · Zbl 0708.76106 · doi:10.1007/BF00271794
[2] Aleksić-Roessner, K.; King, R.; Lehmann, O.; Tadmor, G.; Morzyński, M., On the need of nonlinear control for efficient model-based wake stabilization, Theor. Comput. Fluid Dyn., 28, 1, 23-49, (2013) · doi:10.1007/s00162-013-0299-9
[3] Barbagallo, A.; Sipp, D.; Schmid, P. J., Closed-loop control of an open cavity flow using reduced-order models, J. Fluid Mech., 641, 1-50, (2009) · Zbl 1183.76701 · doi:10.1017/S0022112009991418
[4] Barkley, D.; Henderson, R. D., Three-dimensional Floquet stability analysis of the wake of a circular cylinder, J. Fluid Mech., 322, 215-241, (1996) · Zbl 0882.76028 · doi:10.1017/S0022112096002777
[5] Berger, E., Suppression of vortex shedding and turbulence behind oscillating cylinders, Phys. Fluids, 10, 9, S191-S193, (1967) · doi:10.1063/1.1762444
[6] Bergmann, M.; Bruneau, C.-H.; Iollo, A., Enablers for robust POD models, J. Comput. Phys., 228, 2, 516-538, (2009) · Zbl 1409.76099 · doi:10.1016/j.jcp.2008.09.024
[7] Bergmann, M.; Cordier, L.; Brancher, J.-P., Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model, Phys. Fluids, 17, 9, (2005) · Zbl 1187.76044 · doi:10.1063/1.2033624
[8] Bergmann, M.; Cordier, L.; Brancher, J.-P., On the power required to control the circular cylinder wake by rotary oscillations, Phys. Fluids, 18, 8, (2006) · Zbl 1185.76556
[9] Berkooz, G.; Holmes, P.; Lumley, J. L., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 1, 539-575, (1993) · doi:10.1146/annurev.fl.25.010193.002543
[10] Bewley, T. R.; Moin, P.; Temam, R., DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms, J. Fluid Mech., 447, 179-225, (2001) · Zbl 1036.76027 · doi:10.1017/S0022112001005821
[11] Blevins, R. D., Review of sound induced by vortex shedding from cylinders, J. Sound Vib., 92, 4, 455-470, (1984) · doi:10.1016/0022-460X(84)90191-3
[12] Brunton, S. L.; Noack, B. R., Closed-loop turbulence control: progress and challenges, Appl. Mech. Rev., 67, 5, (2015) · doi:10.1115/1.4031175
[13] Camarri, S.; Iollo, A., Feedback control of the vortex-shedding instability based on sensitivity analysis, Phys. Fluids, 22, 9, (2010) · doi:10.1063/1.3481148
[14] Carini, M.; Pralits, J. O.; Luchini, P., Feedback control of vortex shedding using a full-order optimal compensator, J. Fluids Struct., 53, 15-25, (2015) · doi:10.1016/j.jfluidstructs.2014.11.011
[15] Chernyshenko, S. I.; Goulart, P.; Huang, D.; Papachristodoulou, A., Polynomial sum of squares in fluid dynamics: a review with a look ahead, Phil. Trans. R. Soc. Lond. A, 372, 2020, (2014) · Zbl 1353.76021
[16] Choi, H.; Jeon, W.-P.; Kim, J., Control of flow over a bluff body, Annu. Rev. Fluid Mech., 40, 1, 113-139, (2008) · Zbl 1136.76022 · doi:10.1146/annurev.fluid.39.050905.110149
[17] Cordier, L.; Majd, E.; Abou, B.; Favier, J., Calibration of POD reduced-order models using Tikhonov regularization, Intl J. Numer. Meth. Fluids, 63, 2, 269-296, (2010) · Zbl 1425.76181
[18] Cordier, L.; Noack, B. R.; Tissot, G.; Lehnasch, G.; Delville, J. L.; Balajewicz, M.; Daviller, G.; Niven, R. K., Identification strategies for model-based control, Exp. Fluids, 54, 8, 1580, (2013) · doi:10.1007/s00348-013-1580-9
[19] Couplet, M.; Basdevant, C.; Sagaut, P., Calibrated reduced-order POD-Galerkin system for fluid flow modelling, J. Comput. Phys., 207, 1, 192-220, (2005) · Zbl 1177.76283 · doi:10.1016/j.jcp.2005.01.008
[20] Debien, A.; Krbek, K. A. F. F.; Mazellier, N.; Duriez, T.; Cordier, L.; Noack, B. R.; Abel, M. W.; Kourta, A., Closed-loop separation control over a sharp edge ramp using genetic programming, Exp. Fluids, 57, 3, 1-19, (2016) · doi:10.1007/s00348-016-2126-8
[21] Ferziger, J. H. & Perić, M.2002Computational Methods for Fluid Dynamics, vol. 3. Springer. doi:10.1007/978-3-642-56026-2 · Zbl 0998.76001
[22] Fletcher, C. A. J., Computational Galerkin Methods, (1984), Springer · Zbl 0533.65069 · doi:10.1007/978-3-642-85949-6
[23] Flinois, T. L. B.; Colonius, T., Optimal control of circular cylinder wakes using long control horizons, Phys. Fluids, 27, 8, (2015) · doi:10.1063/1.4928896
[24] Fornberg, B., Steady viscous flow past a circular cylinder up to Reynolds number 600, J. Comput. Phys., 61, 2, 297-320, (1985) · Zbl 0576.76026 · doi:10.1016/0021-9991(85)90089-0
[25] Fujisawa, N.; Kawaji, Y.; Ikemoto, K., Feedback control of vortex shedding from a circular cylinder by rotational oscillations, J. Fluids Struct., 15, 1, 23-37, (2001) · doi:10.1006/jfls.2000.0323
[26] Galletti, B.; Bruneau, C. H.; Zannetti, L.; Iollo, A., Low-order modelling of laminar flow regimes past a confined square cylinder, J. Fluid Mech., 503, 161-170, (2004) · Zbl 1116.76344 · doi:10.1017/S0022112004007906
[27] Gautier, N.; Aider, J. L.; Duriez, T.; Noack, B. R.; Segond, M.; Abel, M., Closed-loop separation control using machine learning, J. Fluid Mech., 770, 442-457, (2015) · doi:10.1017/jfm.2015.95
[28] Giannetti, F.; Luchini, P., Structural sensitivity of the first instability of the cylinder wake, J. Fluid Mech., 581, 167-197, (2007) · Zbl 1115.76028 · doi:10.1017/S0022112007005654
[29] Goulart, P. J.; Chernyshenko, S., Global stability analysis of fluid flows using sum-of-squares, Physica D, 241, 6, 692-704, (2012) · Zbl 1331.76050
[30] Graham, W. R.; Peraire, J.; Tang, K. Y., Optimal control of vortex shedding using low-order models. Part II. Model-based control, Intl J. Numer. Meth. Engng, 44, 7, 973-990, (1999) · Zbl 0955.76026 · doi:10.1002/(SICI)1097-0207(19990310)44:7<973::AID-NME538>3.0.CO;2-F
[31] Henrion, D. & Garulli, A.2005Positive Polynomials in Control, vol. 312. Springer. doi:10.1007/b96977 · Zbl 1059.93002
[32] Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, (1998), Cambridge University Press · Zbl 0923.76002
[33] Homescu, C.; Navon, I. M.; Li, Z., Suppression of vortex shedding for flow around a circular cylinder using optimal control, Intl J. Numer. Meth. Fluids, 38, 1, 43-69, (2002) · Zbl 1007.76019 · doi:10.1002/fld.203
[34] Huang, D.; Chernyshenko, S.; Goulart, P.; Lasagna, D.; Tutty, O.; Fuentes, F., Sum-of-squares of polynomials approach to nonlinear stability of fluid flows: an example of application, Proc. R. Soc. Lond. A, 471, 2183, (2015) · Zbl 1371.76050 · doi:10.1098/rspa.2015.0622
[35] Illingworth, S. J.; Naito, H.; Fukagata, K., Active control of vortex shedding: an explanation of the gain window, Phys. Rev. E, 90, 4, (2014) · doi:10.1103/PhysRevE.90.043014
[36] Jasak, H., Jemcov, A. & Tukovic, Z.2007OpenFOAM: a C++ library for complex physics simulations. In Intl Workshop on Coupled Methods in Numerical Dynamics, vol. 1000, pp. 1-20. IUC Dubrovnik.
[37] Kasnakoğlu, C. U.; Serrani, A.; Efe, M. O., Control input separation by actuation mode expansion for flow control problems, Intl J. Control, 81, 9, 1475-1492, (2008) · Zbl 1152.49316 · doi:10.1080/00207170701867857
[38] Lauga, E.; Bewley, T. R., The decay of stabilizability with Reynolds number in a linear model of spatially developing flows, Proc. R. Soc. Lond. A, 459, 2036, 2077-2095, (2003) · Zbl 1041.76026 · doi:10.1098/rspa.2002.1116
[39] Lehmann, O., Luchtenburg, M., Noack, B. R., King, R., Morzynski, M. & Tadmor, G.2005Wake stabilization using POD Galerkin models with interpolated modes. Proc. of the 44th IEEE Conf. on Decision and Control, 2005 and 2005 European Control Conf., CDC-ECC ’05. pp. 500-505. IEEE.
[40] Löfberg, J.2004Yalmip: a toolbox for modeling and optimization in MATLAB. In Proc. of the CACSD Conf., Taipei, Taiwan.
[41] Löfberg, J., Pre- and post-processing sum-of-squares programs in practice, IEEE Trans. Autom. Control, 54, 5, 1007-1011, (2009) · Zbl 1367.90002 · doi:10.1109/TAC.2009.2017144
[42] Lu, L.; Qin, J. M.; Teng, B.; Li, Y. C., Numerical investigations of lift suppression by feedback rotary oscillation of circular cylinder at low Reynolds number, Phys. Fluids, 23, 3, (2011)
[43] Marion, M.; Temam, R., Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26, 5, 1139-1157, (1989) · Zbl 0683.65083 · doi:10.1137/0726063
[44] Marquet, O.; Sipp, D.; Jacquin, L., Sensitivity analysis and passive control of cylinder flow, J. Fluid Mech., 615, 221-252, (2008) · Zbl 1165.76012 · doi:10.1017/S0022112008003662
[45] Mehmood, A.; Abdelkefi, A.; Akhtar, I.; Nayfeh, A. H.; Nuhait, A.; Hajj, M. R., Linear and nonlinear active feedback controls for vortex-induced vibrations of circular cylinders, J. Vib. Control, 20, 8, 1137-1147, (2014) · doi:10.1177/1077546312469425
[46] Monkewitz, P. A.; Berger, E.; Schumm, M., The nonlinear stability of spatially inhomogeneous shear flows, including the effect of feedback, Eur. J. Mech. (B/Fluids), 10, 295-300, (1991)
[47] Nguang, S. K., Krug, M. & Saat, S.2011Nonlinear static output feedback controller design for uncertain polynomial systems: an iterative sums of squares approach. In Proc. of the IEEE Conf. on Industrial Electronics and Applications, 2011, vol. 3, pp. 979-984. IEEE. doi:10.1109/ICIEA.2011.5975729 · Zbl 1278.93087
[48] Noack, B. R.; Afanasiev, K.; Morzynski, M.; Tadmor, G.; Thiele, F., A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech., 497, 335-363, (2003) · Zbl 1067.76033 · doi:10.1017/S0022112003006694
[49] Noack, B. R.; Eckelmann, H., A global stability analysis of the steady and periodic cylinder wake, J. Fluid Mech., 270, 297-330, (1994) · Zbl 0813.76025 · doi:10.1017/S0022112094004283
[50] Noack, B. R.; Schlegel, M.; Ahlborn, B.; Mutschke, G.; Morzyński, M.; Comte, P.; Tadmor, G., A finite-time thermodynamics of unsteady fluid flows, J. Non-Equilib. Thermodyn., 33, 2, 103-148, (2008) · Zbl 1148.80302
[51] Östh, J.; Noack, B. R.; Krajnović, S.; Barros, D.; Borée, J., On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body, J. Fluid Mech., 747, 518-544, (2014) · Zbl 1371.76085 · doi:10.1017/jfm.2014.168
[52] Papachristodoulou, A., Anderson, J., Valmorbida, G., Prajna, S., Seiler, P. & Parrilo, P. A.2013 SOSTOOLS: Sum of squares optimization toolbox for MATLAB. arXiv:1310.4716. Available at: http://www.eng.ox.ac.uk/control/sostools, http://www.cds.caltech.edu/sostools and http://www.mit.edu/∼parrilo/sostools.
[53] Papachristodoulou, A. & Prajna, S.2002On the construction of Lyapunov functions using the sum of squares decomposition. Proc. of the 41st IEEE Conf. on Decision and Control, 2002, vol. 3, pp. 3482-3487. IEEE. doi:10.1109/CDC.2002.1184414
[54] Parezanović, V.; Cordier, L.; Spohn, A.; Duriez, T.; Noack, B. R.; Bonnet, J.-P.; Segond, M.; Abel, M.; Brunton, S. L., Frequency selection by feedback control in a turbulent shear flow, J. Fluid Mech., 797, 247-283, (2016) · Zbl 1425.76110 · doi:10.1017/jfm.2016.261
[55] Park, D. S.; Ladd, D. M.; Hendricks, E. W., Feedback control of von Kármán vortex shedding behind a circular cylinder at low Reynolds numbers, Phys. Fluids, 6, 7, 2390-2405, (1994) · Zbl 0838.76018 · doi:10.1063/1.868188
[56] Parrilo, P. A., Semidefinite programming relaxations for semialgebraic problems, Math. Programming, 96, 2, 293-320, (2003) · Zbl 1043.14018 · doi:10.1007/s10107-003-0387-5
[57] Peifer, M.; Timmer, J., Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting, Syst. Biol., 1, 2, 78-88, (2007)
[58] Protas, B.; Noack, B. R.; Östh, J., Optimal nonlinear eddy viscosity in Galerkin models of turbulent flows, J. Fluid Mech., 766, 337-367, (2015) · Zbl 1337.76038 · doi:10.1017/jfm.2015.14
[59] Protas, B.; Styczek, A., Optimal rotary control of the cylinder wake in the laminar regime, Phys. Fluids, 14, 7, 2073-2087, (2002) · Zbl 1185.76304 · doi:10.1063/1.1476671
[60] Protas, B.; Wesfreid, J. E., Drag force in the open-loop control of the cylinder wake in the laminar regime, Phys. Fluids, 14, 2, 810-826, (2002) · Zbl 1184.76437 · doi:10.1063/1.1432695
[61] Provansal, M.; Mathis, C.; Boyer, L., Bénard – von Kármán instability: transient and forced regimes, J. Fluid Mech., 182, 1-22, (1987) · Zbl 0641.76046 · doi:10.1017/S0022112087002222
[62] Rempfer, D., On low-dimensional Galerkin models for fluid flow, Theor. Comput. Fluid Dyn., 14, 2, 75-88, (2000) · Zbl 0984.76068 · doi:10.1007/s001620050131
[63] Renka, R. J., Algorithm 624: triangulation and interpolation at arbitrarily distributed points in the plane, ACM Trans. Math. Softw., 10, 4, 440-442, (1984) · doi:10.1145/2701.356108
[64] Roussopoulos, K., Feedback control of vortex shedding at low Reynolds numbers, J. Fluid Mech., 248, 267-296, (1993) · doi:10.1017/S0022112093000771
[65] Sarpkaya, T., A critical review of the intrinsic nature of vortex-induced vibrations, J. Fluids Struct., 19, 4, 389-447, (2004) · doi:10.1016/j.jfluidstructs.2004.02.005
[66] Schlegel, M.; Noack, B. R., On long-term boundedness of Galerkin models, J. Fluid Mech., 765, 325-352, (2015) · Zbl 1336.76014 · doi:10.1017/jfm.2014.736
[67] Siegel, G.; Cohen, K.; Mclaughlin, T., Numerical simulations of a feedback-controlled circular cylinder wake, AIAA J., 44, 6, 1266-1276, (2006) · doi:10.2514/1.4443
[68] Sirisup, S.; Karniadakis, G. E., A spectral viscosity method for correcting the long-term behavior of POD models, J. Comput. Phys., 194, 1, 92-116, (2004) · Zbl 1136.76412 · doi:10.1016/j.jcp.2003.08.021
[69] Sirovich, L., Turbulence and the dynamics of coherent structures. Part I: Coherent structures, Q. Appl. Maths, 45, 3, 561-571, (1987) · Zbl 0676.76047
[70] Tadmor, G.; Lehmann, O.; Noack, B. R.; Cordier, L.; Delville, J.; Bonnet, J.-P.; Morzyński, M., Reduced-order models for closed-loop wake control, Phil. Trans. R. Soc. Lond. A, 369, 1940, 1513-1524, (2011) · Zbl 1219.76020 · doi:10.1098/rsta.2010.0367
[71] Tadmor, G.; Lehmann, O.; Noack, B. R.; Morzyski, M., Mean field representation of the natural and actuated cylinder wake, Phys. Fluids, 22, 3, (2010) · Zbl 1188.76154 · doi:10.1063/1.3298960
[72] Tan, W.2006 Nonlinear control analysis and synthesis using sum-of-squares programming. PhD dissertation, University of California, Berkeley, CA.
[73] Tang, S.; Aubry, N., On the symmetry breaking instability leading to vortex shedding, Phys. Fluids, 9, 9, 2550-2561, (1997) · Zbl 1185.76645 · doi:10.1063/1.869372
[74] Temam, R., Inertial manifolds, Math. Intell., 12, 4, 68-74, (1990) · Zbl 0711.58025 · doi:10.1007/BF03024036
[75] Thomas, F. O.; Kozlov, A.; Corke, T. C., Plasma actuators for cylinder flow control and noise reduction, AIAA J, 46, 8, 1921-1931, (2008) · doi:10.2514/1.27821
[76] Valmorbida, G.; Tarbouriech, S.; Garcia, G., Design of polynomial control laws for polynomial systems subject to actuator saturation, IEEE Trans. Autom. Control, 58, 7, 1758-1770, (2013) · Zbl 1369.93257 · doi:10.1109/TAC.2013.2248256
[77] Weller, J.; Camarri, S.; Iollo, A., Feedback control by low-order modelling of the laminar flow past a bluff body, J. Fluid Mech., 634, 405-418, (2009) · Zbl 1183.76704 · doi:10.1017/S0022112009990590
[78] Williamson, C. H. K.; Govardhan, R., Vortex-induced vibrations, Annu. Rev. Fluid Mech., 36, 1, 413-455, (2004) · Zbl 1125.74323 · doi:10.1146/annurev.fluid.36.050802.122128
[79] Zhao, D.; Wang, J.-L., Robust static output feedback design for polynomial nonlinear systems, Intl J. Robust Nonlinear Control, 20, 1637-1654, (2010) · Zbl 1204.93054 · doi:10.1002/rnc.1541
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.