×

Quasi-periodic intermittency in oscillating cylinder flow. (English) Zbl 1460.76213

Summary: Fluid dynamics induced by periodically forced flow around a cylinder is analysed computationally for the case when the forcing frequency is much lower than the von Kármán vortex shedding frequency corresponding to the constant flow velocity condition. By using the Koopman mode decomposition approach, we find a new normal form equation that extends the classical Hopf bifurcation normal form by a time-dependent term for Reynolds numbers close to the Hopf bifurcation value. The normal form describes the dynamics of an observable and features a forcing (control) term that multiplies the state, and is thus a parametric – i.e. not an additive – forcing effect. We find that the dynamics of the flow in this regime is characterized by alternating instances of quiescent and strong oscillatory behaviour and that this pattern persists indefinitely. Furthermore, the spectrum of the associated Koopman operator is shown to possess quasi-periodic features. We establish the theoretical underpinnings of this phenomenon – that we name quasi-periodic intermittency – using the new normal form model and show that the dynamics is caused by the tendency of the flow to oscillate between the unstable fixed point and the stable limit cycle of the unforced flow. The quasi-periodic intermittency phenomenon is also characterized by positive finite-time Lyapunov exponents that, over a long period of time, asymptotically approach zero.

MSC:

76D17 Viscous vortex flows
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bagheri, S.2013Koopman-mode decomposition of the cylinder wake. J. Fluid Mech.726, 596-623. · Zbl 1287.76116
[2] Bagheri, S.2014Effects of weak noise on oscillating flows: linking quality factor, floquet modes, and Koopman spectrum. Phys. Fluids26, 094104.
[3] Bajaj, A. K.1986Resonant parametric perturbations of the Hopf bifurcation. J. Math. Anal. Appl.115, 214-224. · Zbl 0588.34031
[4] Brunton, S. L. & Noack, B. R.2015Clsoed-loop turbulence control: progress and challenges. Annu. Mech. Rev.67, 050801.
[5] Budisic, M. & Mezić, I.2012Applied Koopmanism. Chaos22, 047510. · Zbl 1319.37013
[6] Cetiner, O. & Rockwell, D.2001Streamwise oscillations of a cylinder in steady current. Part 1. Locked-on states of vortex formation and loading. J. Fluid Mech.427, 1-28. · Zbl 0963.76503
[7] Chen, K. K., Tu, J. H. & Rowley, C. W.2011Variants of dynamic mode decomposition: boundary conditions, Koopman, and Fourier analyses. J. Nonlinear Sci.22 (6), 887-915. · Zbl 1259.35009
[8] Gabale, A. P. & Sinha, S. C.2009A direct analysis of nonlinear systems with external periodic excitations via normal forms. Nonlinear Dyn.55 (1), 79-93. · Zbl 1272.70103
[9] Gal, P. L., Nadim, A. & Thompson, M.2001Hysteresis in the forced Stuart-Landau equation: application to vortex shedding from an oscillating cylinder. J. Fluids Struct.15, 445-457.
[10] Guckenheimer, J. & Holmes, P.1983Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer. · Zbl 0515.34001
[11] Hilborn, R. C.1994Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press. · Zbl 0804.58002
[12] Huerre, P. & Monkewitz, P. A.1990Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech.22 (1), 473-537. · Zbl 0734.76021
[13] Konstantinidis, E. & Balabani, S.2007Symmetric vortex shedding in the near wake of a circular cylinder due to streamwise perturbations. J. Fluids Struct.23, 1047-1063.
[14] Koopman, B. O.1931Hamiltonian systems and transformation in Hilbert space. Proc. Natl Acad. Sci. USA17 (5), 315-318. · JFM 57.1010.02
[15] Landau, L. D. & Lifshitz, E. M.1987Fluid Mechanics, vol. 2. Pergamon. · Zbl 0081.22207
[16] Leontini, J. S., Jacono, D. L. & Thompson, M. C.2011A numerical study of an inline oscillating cylinder in a free stream. J. Fluid Mech.688, 551-568. · Zbl 1241.76140
[17] Leontini, J. S., Jacono, D. L. & Thompson, M. C.2013Wake states and frequency selection of a streamwise oscillating cylinder. J. Fluid Mech.730, 162-192. · Zbl 1291.76114
[18] Lin, K. K. & Young, L. S.2008Shear-induced chaos. Nonlinearity21, 899-922. · Zbl 1153.37355
[19] Luchtenburg, D. M., Gunther, B., Noack, B. R., King, R. & Tadmor, G.2009A generalized mean-field model of the natural and high frequency actuated flow around a high-lift configuration. J. Fluid Mech.623, 283-316. · Zbl 1157.76344
[20] McCroskey, W. J.1982Unsteady airfoils. Annu. Rev. Fluid Mech.14 (1), 285-311. · Zbl 0512.76010
[21] Mezić, I.2005Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn.41 (1), 309-325. · Zbl 1098.37023
[22] Mezić, I.2013Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech.45, 357-378. · Zbl 1359.76271
[23] Nayfeh, A. H.2011The Method of Normal Forms. Wiley. · Zbl 1234.37003
[24] Perdikaris, P. G., Kaiktsis, L. & Triantafyllou, G. S.2009Chaos in a cylinder wake due to forcing at the Strouhal frequency. Phys. Fluids21, 101705. · Zbl 1183.76413
[25] Provansal, M., Mathis, C. & Boyer, L.1987Benard-von Kármán instability: transient and forced regimes. J. Fluid Mech.182, 1-22. · Zbl 0641.76046
[26] Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S.2009Spectral analysis of nonlinear flows. J. Fluid Mech.641, 115-127. · Zbl 1183.76833
[27] Ruelle, D. & Takens, F.1971On the nature of turbulence. Commun. Math. Phys.20, 167-192. · Zbl 0223.76041
[28] Schmid, P. J.2010Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.656, 5-28. · Zbl 1197.76091
[29] Schmid, P. & Sesterhenn, J.2008Dynamic mode decomposition of numerical and experimental data. In 61st Annual Meeting of the APS Division of Fluid Dynamics.
[30] Singh, R. K. & Manhas, J. S.1993Composition Operators on Function Spaces. North-Holland. · Zbl 0788.47021
[31] Sipp, D.2012Open-loop control of cavity oscillations with harmonic forcings. J. Fluid Mech.708, 439-468. · Zbl 1275.76089
[32] Sreenivasan, K. R., Strykowski, P. J. & Olinger, D. J.1987Hopf bifurcation, Landau equation and vortex shedding behind circular cylinders. In Proc. Forum Unsteady Separation (ed. K. N.Ghia), vol. 52. ASME.
[33] Susuki, Y. & Mezić, I.2012Nonlinear Koopman modes and a precursor to power system swing instabilities. Power Systems, IEEE Trans.27 (3), 1182-1191.
[34] Tsarouhas, G. E. & Ross, J.1987Explicit solutions of normal form of driven oscillatory systems. J. Chem. Phys.87 (11), 6538-6543.
[35] Tsarouhas, G. E. & Ross, J.1988Explicit solutions of normal form of driven oscillatory systems in entrainment bands. J. Chem. Phys.88 (9), 5715-5720.
[36] Vance, W., Tsarouhas, G. & Ross, J.1989Universal bifurcation structures of forced oscillators. Prog. Theor. Phys. Suppl.99, 331-338.
[37] Wang, Q. & Young, L. S.2003Strange attractors in periodically-kicked limit cycles and Hopf bifurcations. Commun. Math. Phys.240, 509-529. · Zbl 1078.37027
[38] Wiggins, S.1990Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer. · Zbl 0701.58001
[39] Wynn, A., Pearson, D. S., Ganapathisubramani, B. & Goulart, P. J.2013Optimal mode decomposition for unsteady flows. J. Fluid Mech.733, 473-503. · Zbl 1294.76205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.