×

Finite-volume fractional-moment criteria for Anderson localization. (English) Zbl 1038.82038

Summary: A technically convenient signature of localization, exhibited by discrete operators with random potentials, is exponential decay of the fractional moments of the Green function within the appropriate energy ranges. Known implications include: spectral localization, absence of level repulsion, strong form of dynamical localization, and a related condition which plays a significant role in the quantization of the Hall conductance in two-dimensional Fermi gases. We present a family of finite-volume criteria which, under some mild restrictions on the distribution of the potential, cover the regime where the fractional moment decay condition holds. The constructive criteria permit to establish this condition at spectral band edges, provided there are sufficient ”Lifshitz tail estimates” on the density of states. They are also used here to conclude that the fractional moment condition, and thus the other manifestations of localization, are valid throughout the regime covered by the ”multiscale analysis”. In the converse direction, the analysis rules out fast power-law decay of the Green functions at mobility edges.

MSC:

82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
35Q40 PDEs in connection with quantum mechanics
35R60 PDEs with randomness, stochastic partial differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abraham, E.; Anderson, P. W.; Licciardello, D. C.; Ramakrishnan, T. V.: Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. rev. Lett. 42, 673 (1979)
[2] Mirlin, A. D.; Fyodorov, Y. V.: Localization transition in the Anderson model on the Bethe lattice: spontaneous symmetry breaking and correlation function nucl. Phys. B. 366, 507 (1991) · Zbl 0760.15017
[3] M. Aizenman, J.H. Schenker, R.M. Friedrich, D. Hundertmark, Finite-volume criteria for Anderson localization, preprint, 1999, http://xxx.lanl.gov/abs/math-ph/9910022. · Zbl 1038.82038
[4] Aizenman, M.; Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. math. Phys. 157, 245 (1999) · Zbl 0782.60044
[5] Simon, B.; Wolff, T.: Singular continuous spectra under rank one perturbation and localization for random Hamiltonians. Commun. pure appl. Math. 39, 75 (1996)
[6] Aizenman, M.: Localization at weak disorder: some elementary bounds. Rev. math. Phys. 6, 1163 (1994) · Zbl 0843.47039
[7] Del Rio, R.; Jitomirskaya, S.; Last, Y.; Simon, B.: Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization. J. anal. Math. 69, 153 (1996) · Zbl 0908.47002
[8] Minami, N.: Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Commun. math. Phys. 177, 709 (1996) · Zbl 0851.60100
[9] Aizenman, M.; Graf, G. M.: Localization bounds for an electron gas. J. phys. A 31, 6783 (1998) · Zbl 0953.82009
[10] Avron, J. E.; Seiler, R.; Simon, B.: Charge deficiency, charge transport and comparison of dimensions. Commun. math. Phys. 159, 399 (1994) · Zbl 0822.47056
[11] Bellissard, J.; Van Elst, A.; Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall effect. J. math. Phys. 35, 5373 (1994) · Zbl 0824.46086
[12] Fröhlich, J.; Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. math. Phys. 88, 151 (1993) · Zbl 0519.60066
[13] D. Damanik, P. Stollmann, Multi-scale analysis implies strong dynamical localization, preprint, 1999 http://xxx.lanl.gov/abs/math-ph/9912002. · Zbl 0976.60064
[14] Dobrushin, R. L.; Shlosman, S. B.: Completely analytical interactions: constructive description. J. statist. Phys. 46, No. 5-6, 983-1014 (1987) · Zbl 0683.60080
[15] Hammersley, J. M.: Percolation processes II. The connective constant. Proc. camb. Philos. soc. 53, 642 (1957) · Zbl 0091.13902
[16] Aizenman, M.; Newman, C. M.: Tree graph inequalities and critical behavior in percolation models. J. statist. Phys. 36, 107 (1984) · Zbl 0586.60096
[17] Simon, B.: Correlation inequalities and the decay of correlations in ferromagnets. Commun. math. Phys. 77, No. 2, 111 (1980)
[18] Lieb, E. H.: A refinement of Simon’s correlation inequality. Commun. math. Phys. 77, No. 2, 127 (1980)
[19] Aizenman, M.; Simon, B.: Local ward identities and the decay of correlations in ferromagnets. Commun. math. Phys. 77, No. 2, 137 (1980)
[20] M. Aizenman, R. Holley, Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin Shlosman regime, in: Percolation theory and ergodic theory of infinite particle systems (Minneapolis, Minn., 1984–1985), Vol 1, Springer, New York, 1987. · Zbl 0621.60118
[21] Maes, C.; Shlosman, S. B.: Ergodicity of probabilistic cellular automata: a constructive criterion. Commun. math. Phys. 135, No. 2, 233 (1991) · Zbl 0717.68073
[22] H. Kunz, B. Souillard, Sur le spectre des opérateurs aux différences finies aléatoires, Commun. Math. Phys. 78 (201) (1980). · Zbl 0449.60048
[23] Klein, A.: Absolutely continuous spectrum in the Anderson model on the Bethe lattice. Math. res. Lett. 1, 399 (1993)
[24] Simon, B.: Lifschitz tails for the Anderson model. J. stat. Phys. 38, 65 (1985)
[25] J.M. Barbaroux, J.M. Combes, P.D. Hislop, Localization near band edges for random Schrödinger operators, Helv. Phys. Acta 70 (1997) 16. (Papers honouring the 60th birthday of Klaus Hepp and of Walter Hunziker, Part II Zürich, 1995). · Zbl 0866.35077
[26] Figotin, A.; Klein, A.: Localization of electromagnetic and acoustic waves in random media. Lattice models. J. stat. Phys. 76, 985 (1994) · Zbl 0839.76077
[27] Kirsch, W.; Stollmann, P.; Stolz, G.: Localization for random perturbations of periodic Schrödinger operators.. 1998 (6) · Zbl 0927.60067
[28] Klopp, F.: Internal lifshits tails for random perturbations of periodic Schrödinger operators.. Duke math. J. 98, 335 (1999)
[29] P. Stollmann, Lifshitz asymptotics via liner coupling of disorder, preprint, 1999. · Zbl 0956.60071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.