×

Visualizing mathematics: Evolution of vortical flows. (English) Zbl 0592.76029

Summary: Computers, used as a heuristic tool, allow us to explore complex nonlinear dynamical behavior and to discover unexpected linkages and new concepts in realistic continuum systems. Recent developments in coherent vortex dynamics are illustrated. Techniques for interactive visualization of evolving functions are discussed.

MSC:

76B47 Vortex flows for incompressible inviscid fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ulam, S. M., A Collection of Mathematical Problems (1960), Wiley-Interscience: Wiley-Interscience New York · Zbl 0086.24101
[2] von Neumann, J., (Taub, A., Collected Works of J. von Neumann, vol. 6 (1963), MacMillan: MacMillan New York), 437
[3] Zabusky, N. J.; Overman, E. A., Regularization of contour dynamical algorithms, I. Tangential regularization, J. Comput. Phys., 52, 35-373 (1983) · Zbl 0572.76004
[4] Hazewinkel, M., Experimental Mathematics, (Report PMR-8411 (October 1984), Centrum voor Wisskunde NUN Informatica), To be published · Zbl 0596.00028
[5] Stewart, B., Visualizations of the Lorenz attractor, Presented at the International Conference on Solitons and Coherent Structures. Presented at the International Conference on Solitons and Coherent Structures, January 1985. Presented at the International Conference on Solitons and Coherent Structures. Presented at the International Conference on Solitons and Coherent Structures, January 1985, Physica D (1985), this volume
[6] Zabusky, N. J., Coherent structures in fluid dynamics, (Kursunoglu, B.; Perlmutter, A.; Scott, L. F., Significance of Nonlinearity in the Natural Sciences (1977), Plenum: Plenum New York), 145-205
[7] Baker, G.; Saffman, P. L., Vortex interactions, Ann. Review. of Fluid Mech., 11, 95-122 (1979) · Zbl 0434.76001
[8] Leonard, A., Vortex methods for flow simulations, J. Comput. Phys., 37, 289 (1980) · Zbl 0438.76009
[9] Zabusky, N. J., Contour dynamics: A method for inviscid and nearly inviscid two-dimensional flows, (Tatsumi, T., Proc. of the IUTAM Symposium on Turbulence and Chaotic Phenomena (1984), North-Holland: North-Holland Amsterdam), 251-257
[10] Aref, H., Integrable, chaotic and turbelent vortex motion in two-dimensional flows, Ann. Rev. Fluid Mech., 15, 345-389 (1983)
[11] Rogallo, R. S.; Moin, P., Numerical simulation of turbulent flows, Ann. Rev. Mech., 16, 99-139 (1984)
[12] (Hornung, H. G.; Müller, E. A., Vortex motion (1984), F. Vieweg and Sohn: F. Vieweg and Sohn Braunschweig/Wiesbaden)
[13] Leonard, A., Computing three-dimensional incompressible flows with vortex elements, Ann. Rev. Fluid Mech., 17, 523-559 (1985)
[14] Hasimoto, H., A soliton on a vortex filament, J. Fluid Mech., 51, 477-485 (1972) · Zbl 0237.76010
[15] Arms, R. J.; Hama, F. R., Localized-induction concept on a curved vortex and motion of an elliptic vortex ring, Phys. Fluids, 8, 553-559 (1965)
[16] Dhanak, M. R.; de Bernardinis, B., The evolution of an elliptic vortex ring, J. Fluid Mech., 109, 181-216 (1981) · Zbl 0471.76026
[17] N. Ercolani, private communication.; N. Ercolani, private communication.
[18] Siggia, E. D., Collapse and amplification of a vortex filament, Phys. Fluids, 28, 794 (1985) · Zbl 0596.76025
[19] Three-dimensional vortex dynamics in superfluid \(^4\) He. I. Line-line and line-boundary interactions, Phys. Rev. B. (1985)
[20] Shariff, K.; Leonard, A.; Zabusky, N. J., Acoustic signatures of colliding coaxial axisymmetric vortices, Bull. Amer. Phys. Soc., 30, 1745 (1985)
[21] Vortices around airfoils, American Scientist, 72, 242-248 (1983), Also
[22] Freymuth, P.; Bank, W.; Finaish, F., Visualization of spanwise vortex structure in the starting flow behind an airfoil, (Presented at the AIAA 23rd Aerospace Sciences Meeting (January 14-17, 1985)), AIAA reprint No. AIAA-85-04 77
[23] Estimates of intermittency, spectra and blow-up in developed turbulence, Commun. Pure Appl. Math., 34, 853 (1981) · Zbl 0458.76042
[24] Kuwahara, K., Three dimensional vortex stick method, (Proc. of the 11th IMACS World Congress, vol. 2 (1985)), 85 · Zbl 0554.76022
[25] Vortex methods, II: Higher-order accuracy in two and three dimensions, Math. Comp., 39, 29-52 (1982) · Zbl 0488.76025
[26] J.T. Beale, A convergent 3-D vortex method with grid-free stretching, preprint.; J.T. Beale, A convergent 3-D vortex method with grid-free stretching, preprint. · Zbl 0602.76024
[27] (Tatsumi, T., Proc. of IUTAM Symposium in Turbulence and Chaotic Phenomena (1984), Elsevier: Elsevier New York)
[28] Flierl, G.; Rizzoli, P. M.; Zabusky, N. J., Nonlinear waves and vortex streets arising in barotropic β-plane jets, J. Bull. Am. Phys. Soc., 1551 (1984)
[29] Hasegawa, A.; Mima, K., Phys. Fluids, 21, 87 (1978)
[30] Wolibner, W., Un theorme sur l’existence du movement plan d’un fluide par fait, homogene et incompressible pendant un temps infiniment long, Math. Z., 37, 727-738 (1933)
[31] Kato, T., On the classical solution of the two-dimensional non-stationary Euler equations, Arch. Rat. Mech. Anal., 25, 302 (1967)
[32] Yudovich, V. I., Nonstationary flow of an ideal incompressible liquid, Zh. Vych. Mat., 36, 1032-1066 (1963)
[33] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (1961), Clarendon: Clarendon Oxford · Zbl 0142.44103
[34] Lamb, H., Hydrodynamics (1932), Dover: Dover New York · JFM 26.0868.02
[35] Birkhoff, G., Hydrodynamic instability, (Proc. of the Symp. Appl. Math., XIII (1962), American Math. Soc: American Math. Soc Providence, RI), 55-76
[36] Birkhoff, G.; Fisher, J., Do vortex sheets roll-up?, Rend. Circolo. Mat. di Palermo, 8, 1-14 (1959) · Zbl 0091.17602
[37] Moore, D. W., The spontaneous appearance of a singularity in the shape of an evolving vortex sheet, (Proc. Roy. Soc. London, A365 (1979)), 105 · Zbl 0404.76040
[38] Sulem, C.; Sulem, P. L., The well-posedness of two-dimensional ideal flow, (J. de Mecanique théorique et applique (1983)), 141-217, Numero special · Zbl 0476.76032
[39] R. Hardin, F.D. Tappert, G.S. Deem and N.J. Zabusky, Film of unstable wake-like flows shown at numerous meetings and seminars.; R. Hardin, F.D. Tappert, G.S. Deem and N.J. Zabusky, Film of unstable wake-like flows shown at numerous meetings and seminars.
[40] Roberts, K. V.; Christiansen, J. P., Topics in computational fluid mechanics, Comput. Phys. Commun., 3, 14-32 (1972), (suppl.)
[41] Christiansen, J. P.; Zabusky, N. J., Instability, coalescence, and fission of finite-area vortex structures, J. Fluid Mech., 61, 219 (1973) · Zbl 0266.76039
[42] Zabusky, N. J.; Deem, G. S., Dynamical evolution of two-dimensional unstable shear flows, J. Fluid Mech., 47, 353-379 (1971) · Zbl 0232.76052
[43] Aref, H.; Siggia, E. D., Evolution and breakdown of a vortex street in two dimensions, J. Fluid Mech., 109, 435 (1981)
[44] McWilliams, J. C., The emergence of isolated coherent vortices in turbulent flow, J. Fluid Mech., 146, 21-43 (1984) · Zbl 0561.76059
[45] Zabusky, N.; Hughes, M. H.; Roberts, K. V., Contour dynamics for the Euler equations in two dimensions, J. Comput. Phys., 30, 96-106 (1979) · Zbl 0405.76014
[46] Deem, G. S.; Zabusky, N. J., Stationary V-states: Interactions, recurrence and breaking, (Lonngren, K.; Scott, A., Solitons in Actions (1978), Academic Press: Academic Press New York), 277-293, See also
[47] Wu, H. M.; Overman, E. A.; Zabusky, N. J., Steady state solutions of the Euler equation in two dimensions. Rotating and translating V-states with limiting cases. I. Numerical results, J. Comput. Phys., 53, 42-71 (1984) · Zbl 0524.76029
[48] Pierrehumbert, R. T., A family of steady translating vortex pairs with distributed vorticity, J. Fluid Mech., 99, 129-144 (1980) · Zbl 0473.76034
[49] Structure of a linear array of uniform vortices, Stud. in Appl. Math., LXV, 223-249 (1981) · Zbl 0492.76033
[50] Stability of a vortex street of finite vortices, J. Fluid Mech., 117, 171-185 (1982), (b) · Zbl 0514.76017
[51] Dritschel, D. G., The stability and energetics of corotating uniform vortices, J. Fluid Mech., 157, 95-134 (1985) · Zbl 0574.76026
[52] Wu, H. M.; Overman, E. A.; Zabusky, N. J., Fast contour dynamical algorithms, Bull. Amer. Phys. Soc., 27, 1194 (1982)
[53] E.A. Overman, Steady-state solutions of the Euler equations in two-dimensions. II. Local analysis of limiting V-states, to be published in SIAM J. of Applied Mathematics.; E.A. Overman, Steady-state solutions of the Euler equations in two-dimensions. II. Local analysis of limiting V-states, to be published in SIAM J. of Applied Mathematics. · Zbl 0608.76018
[54] Kida, Stabilizing effects of finite core on a Karman vortex street, J. Fluid Mech., 122, 487 (1982) · Zbl 0522.76025
[55] Meiron, D. I.; Saffman, P. C.; Schatzman, J. C., The linear two-dimensional stability of inviscid vortex streets of finite-cored vortices, J. Fluid Mech., 147, 187 (1984), Discusses a generalization of [49b] · Zbl 0585.76046
[56] D.G. Dritschel, The nonlinear stability of corotating uniform vortices, J. Fluid Mech., submitted for publication.; D.G. Dritschel, The nonlinear stability of corotating uniform vortices, J. Fluid Mech., submitted for publication.
[57] Overman, E. A., N.J. Zabusky, Evolution and merger of isolated vortex structures. Evolution and merger of isolated vortex structures, Phys. Fluids, 25, 1297-1305 (1982)
[58] Overman, E. A.; Zabusky, N. J., (b) Coaxial scattering of Euler equation translating V-states via contour dynamics, J. Fluid Mech., 125, 187-202 (1982) · Zbl 0581.76025
[59] Liggett, J. A.; Liu, P. L.-F., The Boundary Integral Equation Method for Porous Media flow (1982), G. Allen and Unwin: G. Allen and Unwin England · Zbl 0479.76035
[60] Overman, E. A.; Zabusky, N. J.; Ossakow, S. L., Ionospheric plasma clouds dynamics via regularized contour dynamics, I. Stability and nonlinear evolution of one contour models, Phys. Fluids, 26, 1139-1153 (1983) · Zbl 0538.76049
[61] M. Melander, J.C. McWilliams and N.J. Zabusky, Circularization and vorticity gradient intensification of an isolated two-dimensional vortex, J. Fluid Mech., submitted for publication.; M. Melander, J.C. McWilliams and N.J. Zabusky, Circularization and vorticity gradient intensification of an isolated two-dimensional vortex, J. Fluid Mech., submitted for publication. · Zbl 0633.76023
[62] Overman, E. A.; Zabusky, N. J., Diagnostic algorithms for contour dynamics, ARO Report 84-1 269-287 (1984), Transactions of the first Army Conference on Applied Mathematics and Computing
[63] Melander, M. V.; Styczek, A. S.; Zabusky, N. J., Elliptically desingularized vortex model for the two-dimensional Euler equations, Phys. Rev. Lett., 53, 1222-1225 (1984)
[64] Melander, M. V.; Zabusky, N. J.; McWilliams, J. C., A Model for symmetric vortex merger, (Proceedings of the Third Army Conference on Applied Mathematics and Computing. Proceedings of the Third Army Conference on Applied Mathematics and Computing, ARO report 85-1 (May, 1985)) · Zbl 0615.76028
[65] Spalart, P. R.; Leonard, A.; Baganoff, D., Numerical simulation of separated flows, NASA TM 84328 (February 1983)
[66] Burkland, G. J.; Heidelberg, P.; Schatzoff, M.; Welch, P. D.; Wu, L. S.Y., An APL system for interactive scientific-engineering graphics and data analysis, IBM Research Report RC 10494 (#45128) (Sept. 8, 1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.