×

Mobility functions for two unequal viscous drops in Stokes flow. II: Asymmetric motions. (English) Zbl 0675.76108

Summary: [For part I see: ibid. 31, No.9, 2445-2455 (1988; Zbl 0654.76092).] Analytical results are obtained for mobility functions that describe the hydrodynamic interactions for transverse motions of two unequal viscous drops. In conjunction with the results of an earlier paper on axisymmetric motions, the motion induced by external forces in an arbitrary direction, i.e., the solution of the general mobility problem, is thus obtained. In the problem of interest, the drops are small and the surface tension is sufficiently high so that the drops retain a spherical shape. Exact solutions for the velocity images for Stokeslets and higher- order Stokes singularites near a viscous drop are introduced and then these image solutions are used to generate expressions valid for all two- sphere geometries except those for which the gap is much smaller than the diameter of the smaller drop. For rigid spheres, these results are used to obtain a closed-form expression for the Stokes-Einstein Brownian diffusion coefficient.

MSC:

76T99 Multiphase and multicomponent flows
76D07 Stokes and related (Oseen, etc.) flows
35Q30 Navier-Stokes equations
76M99 Basic methods in fluid mechanics
76R50 Diffusion

Citations:

Zbl 0654.76092
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1146/annurev.fl.16.010184.000401 · doi:10.1146/annurev.fl.16.010184.000401
[2] DOI: 10.1017/S0022112070001696 · Zbl 0201.28301 · doi:10.1017/S0022112070001696
[3] DOI: 10.1063/1.866597 · Zbl 0654.76092 · doi:10.1063/1.866597
[4] DOI: 10.1016/0009-2509(72)85043-7 · doi:10.1016/0009-2509(72)85043-7
[5] DOI: 10.1016/0301-9322(73)90004-9 · Zbl 0357.76028 · doi:10.1016/0301-9322(73)90004-9
[6] DOI: 10.1016/0009-2509(78)85090-8 · doi:10.1016/0009-2509(78)85090-8
[7] DOI: 10.1016/0301-9322(78)90021-6 · Zbl 0389.76008 · doi:10.1016/0301-9322(78)90021-6
[8] DOI: 10.1016/0378-4371(86)90185-8 · doi:10.1016/0378-4371(86)90185-8
[9] DOI: 10.1063/1.857525 · Zbl 0656.76085 · doi:10.1063/1.857525
[10] DOI: 10.1017/S0022112084000355 · Zbl 0545.76037 · doi:10.1017/S0022112084000355
[11] DOI: 10.1016/0301-9322(78)90014-9 · Zbl 0389.76021 · doi:10.1016/0301-9322(78)90014-9
[12] DOI: 10.1017/S0022112079001981 · Zbl 0434.76024 · doi:10.1017/S0022112079001981
[13] DOI: 10.1017/S0022112088002241 · Zbl 0644.76036 · doi:10.1017/S0022112088002241
[14] DOI: 10.1098/rspa.1934.0169 · doi:10.1098/rspa.1934.0169
[15] DOI: 10.1017/S0022112069000759 · Zbl 0181.55504 · doi:10.1017/S0022112069000759
[16] DOI: 10.1063/1.865384 · Zbl 0574.76106 · doi:10.1063/1.865384
[17] DOI: 10.1016/0009-2509(64)85001-6 · doi:10.1016/0009-2509(64)85001-6
[18] DOI: 10.1016/0009-2509(64)85001-6 · doi:10.1016/0009-2509(64)85001-6
[19] DOI: 10.1017/S0022112076001663 · Zbl 0346.76073 · doi:10.1017/S0022112076001663
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.