×

System-based approaches for structural optimization of flexible mechanisms. (English) Zbl 1397.74158

Summary: This paper reviews the state-of-the-art methods to perform structural optimization of flexible mechanisms. These methods are based on a system-based approach, i.e. the formulation of the design problem incorporates the time response of the mechanism that is obtained from a dynamic simulation of the flexible multibody system. The system-based approach aims at considering as precisely as possible the effects of nonlinear dynamic loading under various operating conditions. Also, the optimization process enhances most existing studies which are limited to (quasi-) static or frequency domain loading conditions. This paper briefly introduces flexible multibody system dynamics and structural optimization techniques. Afterwards, the two main methods, named the weakly and the fully coupled methods, that couple both disciplines are presented in details and the influence of the multibody system formalism is analyzed. The advantages and drawbacks of both methods are discussed and future possible research areas are mentioned.

MSC:

74P05 Compliance or weight optimization in solid mechanics
49Q12 Sensitivity analysis for optimization problems on manifolds
74P15 Topological methods for optimization problems in solid mechanics
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids

Software:

Adams; NASTRAN; NLPQL
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Afimiwala, K; Mayne, R, Optimal design of an impact absorber, J Eng Ind, 96, 124-130, (1974) · doi:10.1115/1.3438286
[2] Albers A, Häussler P (2005) Topology optimization of dynamic loaded parts using multibody simulation and durability analysis. In: Proceedings of the Nafems Seminar: optimization in structural mechanics, Wiesbaden, Germany
[3] Albers A, Emmrich D, Häussler P (2002) Automated structural optimization of flexible components using msc.adams/flex and msc.nastran sol200. In: Proceedings of the 1st European MSC.ADAMS Users’ Conference, Germany
[4] Albers A, Ottnad J, Häussler P, Minx J (2007) Structural optimization of components in controlled mechanical systems. In: Proceedings of the 6th international conference on multibody systems, nonlinear dynamics, and control, Las Vegas, Nevada, USA
[5] Ambrósio, J; Neto, M; Leal, R, Optimization of a complex flexible multibody systems with composite materials, Multibody Syst Dyn, 18, 117-144, (2007) · Zbl 1132.74034 · doi:10.1007/s11044-007-9086-y
[6] Amir, O; Stolpe, M; Sigmund, O, Efficient use of iterative solvers in nested topology optimization, Struct Multidiscip Optim, 42, 55-72, (2010) · Zbl 1274.74308 · doi:10.1007/s00158-009-0463-4
[7] Ashrafiuon, H; Mani, N, Analysis and optimal design of spatial mechanical systems, J Mech Des, 112, 200-207, (1990) · doi:10.1115/1.2912593
[8] Bastos, G; Brüls, O, An integrated control-structure design for manipulators with flexible links, IFAC-PapersOnLine, 48, 156-161, (2015) · doi:10.1016/j.ifacol.2015.09.176
[9] Bastos, G; Seifried, R; Brüls, O, Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach, Multibody Sys Dyn, 30, 359-376, (2013) · Zbl 1274.93100 · doi:10.1007/s11044-013-9361-z
[10] Bauchau O (2011) Flexible multibody dynamics. Springer, Netherlands. doi:10.1007/978-94-007-0335-3 · Zbl 1209.70001 · doi:10.1007/978-94-007-0335-3
[11] Bauchau, O; Trainelli, L, The vectorial parameterization of rotation, Nonlinear Dyn, 32, 71-92, (2003) · Zbl 1062.70505 · doi:10.1023/A:1024265401576
[12] Bauchau, O; Damilano, G; Theron, N, Numerical integration of non-linear elastic multi-body systems, Int J Numer Methods Eng, 38, 2727-2751, (1995) · Zbl 0840.73057 · doi:10.1002/nme.1620381605
[13] Beckers, P, Recent developments in shape sensitivity analysis: the physical approach, Eng Optim, 18, 67-78, (1991) · doi:10.1080/03052159108941012
[14] Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer Verlag, Berlin. doi:10.1007/978-3-662-05086-6 · Zbl 1059.74001 · doi:10.1007/978-3-662-05086-6
[15] Bestle, D; Eberhard, P, Analyzing and optimizing multibody systems, J Struct Mech, 20, 67-92, (1992) · doi:10.18419/opus-4555
[16] Bestle, D, Sensitivity analysis of constrained multibody systems, Arch Appl Mech, 62, 181-190, (1992) · Zbl 0759.70014 · doi:10.1007/BF00787958
[17] Bletzinger, KU; Firl, M; Linhard, J; Wüchner, R, Optimal shapes of mechanically motivated surfaces, Comput Methods Appl Mech Eng, 199, 324-333, (2010) · Zbl 1227.74043 · doi:10.1016/j.cma.2008.09.009
[18] Bobrow, J; Dubowsky, S; Gibson, J, Time-optimal control of robotic manipulators along specified paths, Int J Robot Res, 4, 3-17, (1985) · doi:10.1177/027836498500400301
[19] Bottasso, C; Croce, A, Optimal control of multibody systems using an energy preserving direct transcription method, Multibody Syst Dyn, 12, 17-45, (2004) · Zbl 1104.70015 · doi:10.1023/B:MUBO.0000042931.61655.73
[20] Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge · Zbl 1058.90049
[21] Braibant, V; Fleury, C, Shape optimal design using b-splines, Comput Methods Appl Mech Eng, 44, 247-267, (1984) · Zbl 0525.73104 · doi:10.1016/0045-7825(84)90132-4
[22] Brüls, O; Cardona, A, On the use of Lie group time integrators in multibody dynamics, J Comput Nonlinear Dyn, 5, 0310002, (2010) · doi:10.1115/1.4001370
[23] Brüls, O; Eberhard, P, Sensitivity analysis for dynamic mechanical systems with finite rotations, Int J Numer Methods Eng, 74, 1897-1927, (2008) · Zbl 1195.70003 · doi:10.1002/nme.2232
[24] Brüls, O; Lemaire, E; Duysinx, P; Eberhard, p, Optimization of multibody systems and their structural components, 49-68, (2011), New York · Zbl 1385.74017 · doi:10.1007/978-90-481-9971-6_3
[25] Brüls, O; Cardona, A; Arnold, M, Lie group generalized-\(α \) time integration of constrained flexible multibody systems, Mech Mach Theory, 48, 121-137, (2012) · doi:10.1016/j.mechmachtheory.2011.07.017
[26] Bruns, T; Tortorelli, D, Computer-aided optimal design of flexible mechanisms, 29-36, (1995), Cork
[27] Bruyneel, M; Duysinx, P; Fleury, C, A family of MMA approximations for structural optimization, Struct Multidiscip Optim, 24, 263-276, (2002) · doi:10.1007/s00158-002-0238-7
[28] Cardona A (1989) An integrated approach to mechanism analysis. PhD thesis, Université de Liège
[29] Cardona, A; Geradin, M, Time integration of the equations of motion in mechanism analysis, Comput Struct, 33, 801-820, (1989) · Zbl 0697.73065 · doi:10.1016/0045-7949(89)90255-1
[30] Cardoso, J; Arora, J, Design sensitivity analysis of nonlinear dynamic response of structural and mechanical systems, Struct Optim, 4, 37-46, (1992) · doi:10.1007/BF01894079
[31] Cassis, J; Schmit, L, Optimum structural design with dynamic constraints, J Struct Div, 102, 2053-2071, (1976)
[32] Choe, U; Gang, S; Sin, M; Park, G, Transformation of a dynamic load into an equivalent static load and shape optimization of the road arm in self-propelled howitzer, Korean Soc Mech Eng, 20, 3767-3781, (1996) · doi:10.22634/KSME-A.1996.20.12.3767
[33] Choi, W; Park, G, Transformation of dynamic loads into equivalent static loads based on modal analysis, Int J Numer Methods Eng, 46, 29-43, (1999) · Zbl 0960.74029
[34] Choi, W; Park, G, Structural optimization using equivalent static loads at all time intervals, Comput Methods Appl Mech Eng, 191, 2105-2122, (2002) · Zbl 1131.74327
[35] Chung, J; Hulbert, G, A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(α \) method, J Appl Mech, 60, 371-375, (1993) · Zbl 0775.73337 · doi:10.1115/1.2900803
[36] Cleghorn, W; Fenton, R; Tabarrok, B, Optimum design of high-speed flexible mechanisms, Mech Mach Theory, 16, 399-406, (1981) · doi:10.1016/0094-114X(81)90013-6
[37] Collard, J; Duysinx, P; Fisette, P, Optimal synthesis of planar mechanisms via an extensible-link approach, Struct Multidiscip Optim, 42, 403-415, (2010) · doi:10.1007/s00158-010-0500-3
[38] Colson, B; Bruyneel, M; S, Grihon; Raick, C, Optimisation methods for advanced design of aircraft panels: a comparison, Optim Eng, 11, 583-596, (2010) · Zbl 1428.90203 · doi:10.1007/s11081-008-9077-8
[39] Crisfield, M; Jelenic, G, Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation, Proc R Soc Lond A, 455, 1125-1147, (1999) · Zbl 0926.74062 · doi:10.1098/rspa.1999.0352
[40] Cugnon, F; Cardona, A; Selvi, A; Paleczny, C; Pucheta, M; Bottasso, C (ed.), Synthesis and optimization of flexible mechanisms, No. 12, 81, (2009), Netherlands · Zbl 1303.70012 · doi:10.1007/978-1-4020-8829-2_5
[41] Deaton, J; Grandhi, R, A survey of structural and multidisciplinary continuum topology optimization: post, Struct Multidiscip Optim, 49, 1-38, (2014) · doi:10.1007/s00158-013-0956-z
[42] Dias, J; Pereira, M, Sensitivity analysis of rigid-flexible multibody systems, Multibody Syst Dyn, 1, 303-322, (1997) · Zbl 0892.73035 · doi:10.1023/A:1009790202712
[43] Ding, J; Pan, Z, Second-order sensitivity analysis of multibody systems described by differential/algebraic equations: adjoint variable approach, Int J Comput Math, 85, 899-913, (2008) · Zbl 1232.70006 · doi:10.1080/00207160701519020
[44] Dong G (2012) Topology optimization for multi-functional components in multibody dynamics systems. PhD thesis, The University of Michigan
[45] Dong G, Ma Z, Hulbert G, Kikuchi N, Arepally S, Vunnan M, Lou K (2011) Efficient sensitivity analysis for multibody dynamics systems using an iterative steps method with application in topology optimization. In: Proceedings of the ASME 2011 international design engineering technical conferences & computers and information in engineering conference IDETC/CIE, Washington, DC, USA. doi:10.1115/DETC2011-47578
[46] Dopico, D; Zhu, Y; Sandu, A, Direct and adjoint sensitivity analysis of ordinary differential equation multibody formulations, J Comput Nonlinear Dyn, 10, 011012, (2015) · doi:10.1115/1.4026492
[47] Dunn, J; Bertsekas, D, Efficient dynamic programming implementations of newton’s method for unconstrained optimal control problems, J Optim Theory Appl, 63, 23-38, (1989) · Zbl 0662.49013 · doi:10.1007/BF00940728
[48] Eich-Soellner E, Führer C (1998) Numerical methods in multibody dynamics. Springer, New York. doi:10.1007/978-3-663-09828-7 · Zbl 0899.70001 · doi:10.1007/978-3-663-09828-7
[49] Erdman A, Sandor G (1991) Mechanism design, analysis and synthesis, 2nd edn. Prentice-Hall, Englewood Cliffs
[50] Erdman, A; Sandor, G; Oakberg, R, A general method for kineto-elastodynamic analysis and synthesis of mechanisms, J Eng Ind, 94, 1193-1205, (1972) · doi:10.1115/1.3428335
[51] Eschenauer, H; Olhoff, N, Topology optimization of continuum structures: a review, Appl Mech Rev, 54, 331-390, (2001) · doi:10.1115/1.1388075
[52] Etman L (1997) Optimization of multibody systems using approximation concepts. PhD thesis, Technische Universiteit Eindhoven · Zbl 0875.70066
[53] Etman, L; Campen, D; Schoofs, A, Design optimization of multibody systems by sequential approximation, Multibody Syst Dyn, 2, 393-415, (1998) · Zbl 0933.74051 · doi:10.1023/A:1009780119839
[54] Feng, T; Arora, J; Haug, E, Optimal structural design under dynamic loads, Int J Numer Methods Eng, 11, 39-52, (1977) · Zbl 0347.73059 · doi:10.1002/nme.1620110106
[55] Fleury, C; Braibant, V, Structural optimization: a new dual method using mixed variables, Int J Numer Methods Eng, 23, 409-428, (1986) · Zbl 0585.73152 · doi:10.1002/nme.1620230307
[56] Forrester, A; Keane, A, Recent advances in surrogate-based optimization, Prog Aerosp Sci, 45, 50-79, (2009) · doi:10.1016/j.paerosci.2008.11.001
[57] Forsgren, A; Gill, P; Wright, M, Interior methods for nonlinear optimization, SIAM Rev, 44, 525-597, (2002) · Zbl 1028.90060 · doi:10.1137/S0036144502414942
[58] Fox, R; Kapoor, M, Structural optimization in the dynamic regime: a computational approach, AIAA J, 8, 1798-1804, (1970) · Zbl 0222.73104 · doi:10.2514/3.5993
[59] Fraeijs De Veubeke, B, The dynamics of flexible bodies, Int J Eng Sci, 14, 895-913, (1976) · Zbl 0343.73002 · doi:10.1016/0020-7225(76)90102-6
[60] Friberg, O, A method for selecting deformation modes in flexible multibody dynamics, Int J Numer Methods Eng, 32, 1637-1655, (1991)
[61] García-Vallejo, D; Mayo, J; Escalona, J; Dominguez, J, Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation, Nonlinear Dyn, 35, 313-329, (2004) · Zbl 1068.74517
[62] Géradin M, Cardona A (2001) Flexible multibody dynamics: a finite element approach. Wiley, New York
[63] Ghandriz, T; Führer, C; Elmqvist, H, Structural topology optimization of multibody systems, Multibody Syst Dyn, 39, 135-148, (2017) · Zbl 1404.70020 · doi:10.1007/s11044-016-9542-7
[64] Grandhi, R; Haftka, R; Watson, L, Design-oriented identification of critical times in transient response, AIAA J, 24, 649-656, (1986) · doi:10.2514/3.9321
[65] Haftka R, Gürdal Z, Haftka R, Gürdal Z (1992) Elements of structural optimization, 3rd edn. Springer, Netherlands. doi:10.1007/978-94-011-2550-5 · Zbl 0782.73004 · doi:10.1007/978-94-011-2550-5
[66] Hansen, J, Synthesis of mechanisms using time-varying dimensions, Multibody Syst Dyn, 7, 127-144, (2002) · Zbl 1012.70003 · doi:10.1023/A:1015247821899
[67] Hansen, J; Tortorelli, D; Bestle, D (ed.); Schiehlen, W (ed.), An efficient method for synthesis of mechanisms using an optimization method, No. 43, 129-138, (1996), Netherlands · doi:10.1007/978-94-009-0153-7_17
[68] Hansen, M, A general procedure for dimensional synthesis of mechanisms, Mech Des Synth, 46, 67-71, (1992)
[69] Hansen, M; Hansen, J, An efficient method for synthesis of planar multibody systems including shape of bodies as design variables, Multibody Syst Dyn, 2, 115-143, (1998) · Zbl 0918.70003 · doi:10.1023/A:1009758123449
[70] Haug E, Arora J (1979) Applied optimal design: mechanical and structural systems. Wiley, New York
[71] Haug, E; Mani, N, Design sensitivity analysis and optimization of dynamically driven systems, 555-635, (1984), New York · doi:10.1007/978-3-642-52465-3_21
[72] Haug, E; Sohoni, V; Haug, E (ed.), Design sensitivity analysis and optimization of kinematically driven systems, No. 9, 499-554, (1984), Berlin · doi:10.1007/978-3-642-52465-3_20
[73] Häussler P, Emmrich D, Müller O, Ilzhöfer B, Nowicki L, Albers A (2001) Automated topology optimization of flexible components in hybrid finite element multibody systems using ADAMS/Flex and MSC. Construct. In: Proceedings of the 16th European ADAMS users’ conference
[74] Häussler P, Minx J, Emmrich D (2004) Topology optimization of dynamically loaded parts in mechanical systems: coupling of MBS, FEM and structural optimization. In: Proceedings of NAFEMS seminar analysis of multi-body systems using FEM and MBS, Wiesbaden, Germany
[75] Held A (2014) On structural optimization of flexible multibody systems. PhD thesis, Institut für Technische und Numerische Mechanik, Universität Stuttgart
[76] Held, A; Seifried, R, Gradient-based optimization of flexible multibody systems using the absolute nodal coordinate formulation, 1-8, (2013), Zagreb Croatia
[77] Held A, Knüfer S, Seifried R (2016) Structural sensitivity analysis of flexible multibody systems modeled with the floating frame of reference approach using the adjoint variable method. Multibody Syst Dyn. doi:10.1007/s11044-016-9540-9 · Zbl 1376.70011
[78] Hilber H, Hughes T, Taylor R (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5(3):283-292. doi:10.1002/eqe.4290050306
[79] Hong, E; You, B; Kim, C; Park, G, Optimization of flexible components of multibody systems via equivalent static loads, Struct Multidiscip Optim, 40, 549-562, (2010) · Zbl 1274.74342 · doi:10.1007/s00158-009-0384-2
[80] Hong, UP, Determination of the crash pulse and optimization of the crash components using the response surface approximate optimization, Proc Inst of Mech Eng Part D, 217, 203-213, (2003) · doi:10.1243/09544070360550408
[81] Hsieh, C; Arora, J, Design sensitivity analysis and optimization of dynamic response, Comput Methods Appl Mech Eng, 43, 195-219, (1984) · Zbl 0527.73092
[82] Hughes T (1987) The finite element method : linear static and dynamic finite element analysis. Prentice-Hall, Upper Saddle River · Zbl 0634.73056
[83] Hussein, B; Negrut, D; Shabana, AA, Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations, Nonlinear Dyn, 54, 283-296, (2008) · Zbl 1262.70002 · doi:10.1007/s11071-007-9328-9
[84] Ider, S; Amirouche, F, Nonlinear modeling of flexible multibody systems dynamics subjected to variable constraints, J Appl Mech, 56, 444-450, (1989) · Zbl 0711.73137 · doi:10.1115/1.3176103
[85] Ilzhöfer B, O Müller PH, Emmrich D, Allinger P (2000) Shape optimization based on parameters from lifetime prediction. In: Proceedings of the Nafems Seminar: fatigue analysis, Wiesbaden, Germany
[86] Imam, I; Sandor, G, High-speed mechanism design—a general analytical approach, J Eng Ind, 97, 609-628, (1975) · doi:10.1115/1.3438626
[87] Jensen, O; Hansen, J, Dimensional synthesis of spatial mechanisms and the problem of non-assembly, Multibody Syst Dyn, 15, 107-133, (2006) · Zbl 1090.70005 · doi:10.1007/s11044-005-9000-4
[88] Jung, U; Park, G, A new method for simultaneous optimum design of structural and control systems, Comput Struct, 160, 90-99, (2015) · doi:10.1016/j.compstruc.2015.08.006
[89] Kang, B; Park, G; Arora, J, Optimization of flexible multibody dynamic systems using the equivalent static load method, AIAA J, 43, 846-852, (2005) · doi:10.2514/1.4294
[90] Kang, B; Park, G; Arora, J, A review of optimization of structures subjected to transient loads, Struct Multidiscip Optim, 31, 81-95, (2006) · Zbl 1245.74057 · doi:10.1007/s00158-005-0575-4
[91] Kang B, Shyy Y, Hong Q (2007) Implementation of equivalent static load method in flexible multibody dynamic systems. In: Proceedings of the 7th World Congress on Structural and Multidisciplinary Optimization, COEX Seoul, Korea
[92] Kawamoto, A, Path-generation of articulated mechanisms by shape and topology variations in non-linear truss representation, Int J Numer Methods Eng, 64, 1557-1574, (2005) · Zbl 1122.74479 · doi:10.1002/nme.1407
[93] Kocer, F; Arora, J, Optimal design of latticed towers subjected to earthquake loading, J Struct Eng, 128, 197-204, (2002)
[94] Kurtaran, H; Eskandarian, A, Design optimization of multi-body systems under impact loading by response surface methodology, Proc Inst Mech Eng Part K, 215, 173-185, (2001) · doi:10.1243/1464419011544457
[95] Kurtaran, H; Eskandarian, A; Marzougui, D; Bedewi, N, Crashworthiness design optimization using successive response surface approximations, Comput Mech, 29, 409-421, (2002) · Zbl 1146.74348 · doi:10.1007/s00466-002-0351-x
[96] Lee, H; Park, G, Nonlinear dynamic response topology optimization using the equivalent static loads method, Comput Methods Appl Mech Eng, 283, 956-970, (2015) · Zbl 1423.74751 · doi:10.1016/j.cma.2014.10.015
[97] Leyendecker, S; Ober-Blöbaum, S; Marsden, J; Ortiz, M, Discrete mechanics and optimal control for constrained systems, Optim Control Appl Methods, 31, 505-528, (2010) · Zbl 1211.49039 · doi:10.1002/oca.912
[98] Marklund, P; Nilsson, L, Optimization of a car body component subjected to side impact, Struct Multidiscip Optim, 21, 383-392, (2001) · doi:10.1007/s001580100117
[99] McCarthy J, Soh G (2011) Geometric design of linkages. Springer, New York. doi:10.1007/978-1-4419-7892-9 · Zbl 1227.70003 · doi:10.1007/978-1-4419-7892-9
[100] Minnaar, R; Tortorelli, D; Snyman, J, On non-assembly in the optimal dimensional synthesis of planar mechanisms, Struct Multidiscip Optim, 21, 345-354, (2001) · doi:10.1007/s001580100113
[101] Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer, New York. doi:10.1007/978-0-387-40065-5 · Zbl 1104.65059 · doi:10.1007/978-0-387-40065-5
[102] Oral, S; Kemal Ider, S, Optimum design of high-speed flexible robotic arms with dynamic behavior constraints, Comput Struct, 65, 255-259, (1997) · Zbl 0921.73209
[103] Park G (2007) Analytic methods for design practice. Springer, London. doi:10.1007/978-1-84628-473-1 · Zbl 1114.74002 · doi:10.1007/978-1-84628-473-1
[104] Park, G; Kang, B, Validation of a structural optimization algorithm transforming dynamic loads into equivalent static loads, J Optim Theory Appl, 118, 191-200, (2003) · Zbl 1031.74040 · doi:10.1023/A:1024799727258
[105] Pereira, M; Dias, J; Schiehlen, W (ed.); Valasek, M (ed.), Optimization of rigid and flexible multibody systems with application to vehicle dynamics and crashworthiness, No. 103, 363-382, (2003), Netherlands · Zbl 1080.70507
[106] Pierson, B, A survey of optimal structural design under dynamic constraints, Int J Numer Methods Eng, 4, 491-499, (1972) · doi:10.1002/nme.1620040404
[107] Pucheta, M; Cardona, A, An automated method for type synthesis of planar linkages based on a constrained subgraph isomorphism detection, Multibody Syst Dyn, 18, 233-258, (2007) · Zbl 1177.70008 · doi:10.1007/s11044-007-9087-x
[108] Queipo, N; Haftka, R; Shyy, W; Goel, T; Tucker, PK, Surrogate-based analysis and optimization, Prog Aerosp Sci, 41, 1-28, (2005) · doi:10.1016/j.paerosci.2005.02.001
[109] Saravanos, D, Optimum structural design of robotic manipulators with fiber reinforced composite materials, Comput Struct, 36, 119-132, (1990) · Zbl 0708.73047 · doi:10.1016/0045-7949(90)90181-Z
[110] Schittkowski, K, NLPQL: A Fortran subroutine solving constrained nonlinear programming problems, Ann Oper Res, 5, 485-500, (1986)
[111] Schwertassek, R; Wallrapp, O; Shabana, AA, Flexible multibody simulation and choice of shape functions, Nonlinear Dyn, 20, 361-380, (1999) · Zbl 0960.70006 · doi:10.1023/A:1008314826838
[112] Sedlaczek K, Gaugele T, Eberhard P (2005) Topology optimized synthesis of planar kinematic rigid body mechanisms. In: Proceedings of the ECCOMAS thematic conference on multibody dynamics, Madrid, Spain
[113] Seifried, R, Two approaches for feedforward control and optimal design of underactuated multibody systems, Multibody Syst Dyn, 27, 75-93, (2012) · Zbl 1344.93055 · doi:10.1007/s11044-011-9261-z
[114] Seifried R, Held A (2011) Integrated design approaches for controlled flexible multibody systems. In: Proceedings of the ASME 2011 international design engineering technical conferences and computers and information in engineering conference (IDETC/CIE 2011), Washington DC, USA, pp 347-354. doi:10.1115/DETC2011-47707
[115] Shabana, A, Flexible multibody dynamics: review of past and recent developments, Multibody Syst Dyn, 1, 189-222, (1997) · Zbl 0893.70008 · doi:10.1023/A:1009773505418
[116] Shabana A (2013) Dynamics of multibody systems, 4th edn. Cambridge University Press, England · Zbl 1291.70002
[117] Shabana AA (1996) An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies. Tech. Rep. MBS96-1-UIC. Department of Mechanical Engineering, University of Illinois at Chicago, Chicago
[118] Sherif, K; Irschik, H, Efficient topology optimization of large dynamic finite element systems using fatigue, AIAA J, 48, 1339-1347, (2010) · doi:10.2514/1.45196
[119] Sigmund, O, On the design of compliant mechanisms using topology optimization, Mech Struct Mach, 25, 493-524, (1997) · doi:10.1080/08905459708945415
[120] Sigmund, O; Maute, K, Topology optimization approaches: a comparative review, Struct Multidiscip Optim, 48, 1031-1055, (2013) · doi:10.1007/s00158-013-0978-6
[121] Simo, J; Tarnow, N, Conserving algorithms for nonlinear dynamics, No. 246, 41-50, (1992), New York · Zbl 0758.73001
[122] Simo, J; Tarnow, N, The discrete energy-momentum method. conserving algorithms for nonlinear elastodynamics, Zeitschrift für angewandte Mathematik und Physik ZAMP, 43, 757-792, (1992) · Zbl 0758.73001 · doi:10.1007/BF00913408
[123] Simo, J; Tarnow, N; Doblare, M, Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms, Int J Numer Methods Eng, 38, 1431-1473, (1995) · Zbl 0860.73025 · doi:10.1002/nme.1620380903
[124] Simpson T, Toropov V, Balabanov V, Viana F (2008) Design and analysis of computer experiments in multidisciplinary design optimization: A review of how far we have come—or not. In: Proceedings of the 12th AIAA/ISSMO multidisciplinary analysis and optimization conference, Victoria, British Columbia, Canada. doi:10.2514/6.2008-5802
[125] Sohoni, V; Haug, E, A state space technique for optimal design of mechanisms, J Mech Des, 104, 792-798, (1982) · doi:10.1115/1.3256438
[126] Sonneville, V; Brüls, O, A formulation on the special Euclidean group for dynamic analysis of multibody systems, J Comput Nonlinear Dyn, 9, 041002-041008, (2014) · Zbl 1293.70034 · doi:10.1115/1.4026569
[127] Sonneville, V; Cardona, A; Brüls, O, Geometrically exact beam finite element formulated on the special Euclidean group SE(3), Comput Methods Appl Mech Eng, 268, 451-474, (2014) · Zbl 1295.74050
[128] Stolpe, M, On the equivalent static loads approach for dynamic response structural optimization, Struct Multidiscip Optim, 50, 921-926, (2014) · doi:10.1007/s00158-014-1101-3
[129] Sun, J; Tian, Q; Hu, H, Structural optimization of flexible components in a flexible multibody system modeled via ANCF, Mech Mach Theory, 104, 59-80, (2016) · doi:10.1016/j.mechmachtheory.2016.05.008
[130] Sun, J; Tian, Q; Hu, H, Topology optimization based on level set for a flexible multibody system modeled via ancf, Struct Multidiscip Optim, 1, 1-19, (2016) · doi:10.1007/s00158-016-1558-3
[131] Svanberg, K, The method of moving asymptotes—a new method for structural optimization, I J Numer Methods Eng, 24, 359-373, (1987) · Zbl 0602.73091
[132] Svanberg, K, A class of globally convergent optimization methods based on conservative convex separable approximations, SIAM J Optim, 12, 555-573, (2002) · Zbl 1035.90088 · doi:10.1137/S1052623499362822
[133] Tobias C, Fehr J, Eberhard P (2010) Durability-based structural optimization with reduced elastic multibody systems. In: Proceedings of 2nd International Conference on engineering optimization, Lisbon, Portugal
[134] Tortorelli, D, Sensitivity analysis for non-linear constrained elastostatic systems, Int J Numer Methods Eng, 33, 1643-1660, (1992) · Zbl 0767.73050 · doi:10.1002/nme.1620330807
[135] Tortorelli, D; Michaleris, P, Design sensitivity analysis: overview and review, Inverse Prob Eng, 1, 71-105, (1994) · doi:10.1080/174159794088027573
[136] Tromme E (2015) Structural optimization of flexible components within a multibody dynamics approach. PhD thesis, Université de Liège
[137] Tromme, E; Brüls, O; Emonds-Alt, J; Bruyneel, M; Virlez, G; Duysinx, P, Discussion on the optimization problem formulation of flexible components in multibody systems, Struct Multidiscip Optim, 48, 1189-1206, (2013) · doi:10.1080/174159794088027573
[138] Tromme, E; Brüls, O, Weakly and fully coupled methods for structural optimization of flexible mechanisms, Multibody Syst Dyn, 38, 391-417, (2015) · Zbl 1386.70021 · doi:10.1007/s11044-015-9493-4
[139] Tromme, E; Tortorelli, D; Brüls, O; Duysinx, P, Structural optimization of multibody system components described using level set techniques, Struct Multidiscip Optim, 52, 959-971, (2015) · doi:10.1007/s00158-015-1280-6
[140] Tromme, E; Sonneville, V; Brüls, O; Duysinx, P, On the equivalent static load method for flexible multibody systems described with a nonlinear finite element formalism, Int J Numer Methods Eng, 108, 646-664, (2016) · doi:10.1002/nme.5237
[141] Van Keulen, F; Haftka, R; Kim, N, Review of options for structural design sensitivity analysis. part 1: linear systems, Comput Methods Appl Mech Eng, 194, 3213-3243, (2005) · Zbl 1091.74040 · doi:10.1016/j.cma.2005.02.002
[142] Verscheure, D; Demeulenaere, B; Swevers, J; De Schutter, J; Diehl, M, Time-optimal path tracking for robots: a convex optimization approach, IEEE Trans Autom Control, 54, 2318-2327, (2009) · Zbl 1367.90088 · doi:10.1109/TAC.2009.2028959
[143] Von Stryk, O, Optimal control of multibody systems in minimal coordinates, ZAMM J Appl Math Mech, 78, 1117-1120, (1998) · Zbl 0921.70020 · doi:10.1002/zamm.199807815124
[144] Wang Q (2006) A study of alternative formulations for optimization of structural and mechanical systems subjected to static and dynamic loads. PhD thesis, The University of Iowa
[145] Wasfy, T; Noor, A, Modeling and sensitivity analysis of multibody systems using new solid, shell and beam elements, Comput Methods Appl Mech Eng, 138, 187-211, (1996) · Zbl 0882.73050 · doi:10.1016/S0045-7825(96)01113-9
[146] Wehage, R; Haug, E, Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems, J Mech Des, 104, 247-255, (1982) · doi:10.1115/1.3256318
[147] Willmert, K, Optimum design of a linear multi-degree-of-freedom shock isolation system, J Eng Ind, 94, 465-471, (1974) · doi:10.1115/1.3428177
[148] Witteveen W, Puchner K, Sherif K, Irschik H (2009) Efficient topology optimization for large and dynamically loaded fe models. In: Proceedings of the IMAC-XXVII: conference and exposition on structural dynamics, Orlando, Florida, USA
[149] Wright, M, The interior-point revolution in optimization: history, recent developments, and lasting consequences, Bull Am Math Soc, 42, 39-56, (2005) · Zbl 1114.90153 · doi:10.1090/S0273-0979-04-01040-7
[150] Zienkiewicz, O; Campbell, J; Gallagher, RH (ed.); Zienkiewicz, OC (ed.), Shape optimization and sequential linear programming, 109-126, (1973), New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.