×

On the matrix completion problem for multivariate filter bank construction. (English) Zbl 1128.65111

Authors’ abstract: We survey the main techniques for the construction of multivariate filter banks and present new results about special matrices of order four and eight suitable for their construction.

MSC:

65T60 Numerical methods for wavelets
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
65F30 Other matrix algorithms (MSC2010)
15A29 Inverse problems in linear algebra
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J.F. Adams, Vector fields on the sphere, Ann. Math. 75 (1962) 603–632. · Zbl 0112.38102 · doi:10.2307/1970213
[2] R. Bott and J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958) 87–89. · Zbl 0082.16602 · doi:10.1090/S0002-9904-1958-10166-4
[3] Q.H. Chen, C.A. Micchelli, S.L. Peng and Y. Xu, Multivariate filter banks having matrix factorization, SIAM J. Matrix Anal. Appl. 25 (2003) 517–531. · Zbl 1043.42026 · doi:10.1137/S0895479802412735
[4] Z. Chen, C.A. Micchelli and Y. Xu, A construction of interpolating wavelets on invariant sets, Compositio Math. 68 (1999) 1560–1587. · Zbl 1051.65009
[5] W. Dahmen and C.A. Micchelli, Banded matrices with banded inverses II: Locally finite decomposition of spline spaces, Constr. Approx. 9 (1993) 263–281. · Zbl 0784.15005 · doi:10.1007/BF01198006
[6] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61 (SIAM, Philadelphia, 1992).
[7] G.B. Folland, Real Analysis (Wiley, New York, 1984). · Zbl 0549.28001
[8] M. Gasca, C.A. Micchelli and J.M. Peña, Banded matrices with banded inverses III: P-slanted matrices, in: Wavelets, Images and Surface Fitting, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker, (A.K. Peters Wellesley, MA, 1994) pp. 245–268. · Zbl 0817.65032
[9] T.N.T. Goodman, Construction of wavelets with multiplicity, Rend. Mat. (7) 15 (1994) 665–691. · Zbl 0810.42017
[10] K. Gröchenig, Analyse multi-echelles et bases d’ondelettes, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 13–15. · Zbl 0625.42014
[11] V. Guillemin and A. Pollack, Differential Topology (Prentice-Hall, Englewood Cliffs, NJ, 1974).
[12] W.J. He and M.J. Lai, Examples of bivariate nonseparable compactly supported orthonormal continuous wavelets, Preprint (2004).
[13] J.G. Hocking and G.S. Young, Topology (Addison-Wesley, MA, 1961).
[14] I.M. James, The Topology of Stiefel Manifolds, London Mathematical Society Lecture Note Series, Vol. 24 (Cambridge Univ. Press, Cambridge, 1976). · Zbl 0337.55017
[15] R.Q. Jia and C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets II: Powers of two, in: Curves and Surfaces, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, San Diego, 1991) pp. 209–246. · Zbl 0777.41013
[16] R.Q. Jia and C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets V: Extensibility of trigonometric polynomials, Computing 48 (1992) 61–72. · Zbl 0765.65023 · doi:10.1007/BF02241706
[17] R.Q. Jia and C.A. Micchelli, On linear independence of integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. 36 (1992) 69–85. · Zbl 0790.41016 · doi:10.1017/S0013091500005903
[18] R.Q. Jia and Z. Shen, Multiresolution and wavelets, Proc. Edinburgh Math. Soc. 37 (1994) 271–300. · Zbl 0809.42018 · doi:10.1017/S0013091500006076
[19] S. Karlin, Total Positivity, Vol. I (Stanford Univ. Press, Stanford, CA, 1968). · Zbl 0219.47030
[20] J. Kovacevic and M. Vetterli, Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for R n, IEEE Trans. Inform. Theory 38 (1992) 533–555. · doi:10.1109/18.119722
[21] A.G. Kurosh, Lectures on General Algebra, translated by K.A. Hersch (Chelsea Publishing Company, New York, 1963). · Zbl 0121.25901
[22] M.J. Lai, Construction of multivariate compactly supported orthonormal wavelets, Preprint (2004). · Zbl 1101.65124
[23] M.J. Lai and D.N. Roach, The nonexistence of bivariate symmetric wavelets with short support and two vanishing moments, Preprint (2003).
[24] T.V. Lam, Serre’s Conjecture, Lecture Notes in Mathematics, Vol. 635 (Springer, New York, 1978). · Zbl 0373.13004
[25] S. Lang, Algebra (Addison-Wesley, Menlo Park, CA, 1984).
[26] C.A. Micchelli, Using the refinement equation for the construction of prewavelets, Numer. Algorithms 1 (1991) 75–116. · Zbl 0759.65005 · doi:10.1007/BF02145583
[27] C.A. Micchelli, A tutorial on multivariate wavelet decomposition, in: Approximation Theory, Spline Functions and Applications, ed. S.P. Singh (Kluwer, Dordrecht, 1992) pp. 191–213. · Zbl 0760.42020
[28] C.A. Micchelli, Using the refinement equation for the construction of prewavelets VI: Shift invariant subspaces, in: Approximation Theory, Spline Functions and Applications, ed. S.P. Singh (Kluwer, Dordrecht, 1992) pp. 213–222. · Zbl 0790.42018
[29] C.A. Micchelli and Y. Xu, Using the matrix refinement equation for the construction of wavelets on invariant sets, Appl. Comput. Harmon. Anal. 1 (1994) 391–401. · Zbl 0815.42019 · doi:10.1006/acha.1994.1024
[30] C.A. Micchelli and Y. Xu, Reconstruction and decomposition algorithms for biorthogonal multiwavelets, Multidimens. Systems Signal Process. 8 (1997) 31–69. · Zbl 0872.42010 · doi:10.1023/A:1008264805830
[31] T.Q. Nguyen and P.P. Vaidyanathan, Two-channel perfect reconstruction FIR QMF structure which yield linear phase FIR analysis and synthesis filters, IEEE Trans. Acoustics, Speech and Signal Process. 37 (1989) 676–690. · doi:10.1109/29.17560
[32] J.A. Packer and M.A. Rieffel, Wavelet filter functions, the matrix completion problem and projective modules over C(T n), J. Fourier Anal. Appl. 9 (2003) 101–116. · Zbl 1036.42037 · doi:10.1007/s00041-003-0010-4
[33] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976) 167–171. · Zbl 0337.13011 · doi:10.1007/BF01390008
[34] S.D. Riemenschneider and Z. Shen, Wavelets and pre-wavelets in low dimensions, J. Approx. Theory 71 (1992) 18–38. · Zbl 0772.41019 · doi:10.1016/0021-9045(92)90129-C
[35] W. Rudin, Functional Analysis (McGraw-Hill, New York, 1991). · Zbl 0867.46001
[36] J.P. Serre, Modules projectifs et espace filbré a fibre vectorielle, Sén. Dubreil-Pisot, 23 (1957/1958).
[37] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer, Berlin, 1983). · Zbl 0771.65002
[38] A.A. Suslin, Projective modules over a polynomial ring are free, Soviet Math. Dokl. 17 (1976) 1160–1164. · Zbl 0354.13010
[39] R.G. Swan, Projective modules over Laurent polynommial rings, Trans. Amer. Math. Soc. 237 (1978) 111–120. · Zbl 0404.13006 · doi:10.1090/S0002-9947-1978-0469906-4
[40] O. Taussky, (1, 2, 4, 8) sums of squares and Hadamard matrices, in: Combinatorics, Proceedings of Symposia in Pure Mathematics (Amer. Math. Soc., 1971) pp. 229–233. · Zbl 0233.05007
[41] P.P. Vaidyanathan, Quadrature mirror filter banks, M-band extensions and perfect reconstruction techniques, IEEE ASSP Mag. 4 (3) (1987) 4–20. · doi:10.1109/MASSP.1987.1165589
[42] P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice-Hall, Englewood Cliffs, NJ, 1993). · Zbl 0784.93096
[43] B.L. Van der Waerden, Modern Algebra, Vol. 2 (Unger, New York, 1950).
[44] M. Vetterli, Filter banks allowing perfect reconstruction, Signal Process. 10(3) (April 1986) 219–244. · doi:10.1016/0165-1684(86)90101-5
[45] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, London Mathematical Society Student Texts, Vol. 37 (Cambridge Univ. Press, Cambridge, UK, 1997). · Zbl 0865.42026
[46] P.J. Woods, Wavelets and C *-algebra, Ph.D. Thesis, Flinders University of South Australia (2003).
[47] X. Xu, Construction of two-dimensional nonseparable orthonormal wavelets of short support, Ph.D. Thesis, University of Georgia (2001).
[48] D.C. Youla and Q. Gnavi, Notes on n-dimensional system theory, IEEE Trans. Circuits Systems 26(2) (February 1979). · Zbl 0394.93004
[49] D.C. Youla and P.F. Pickel, The Quillen–Suslin theorem and the structure of n-dimensional elementary polynomial matrices, IEEE Trans. Circuits Systems 31(6) (June 1984). · Zbl 0553.13003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.