×

Emergence and bifurcations of Lyapunov manifolds in nonlinear wave equations. (English) Zbl 1186.37058

Persistence behavior and bifurcations of Lyapunov manifolds are studied for classes of a parametrically excited wave equations. The semilinear IVP \[ \frac{d w}{ dt } + A w =\varepsilon f(w,t,\varepsilon), \, w(0)=w_0 \] is considered, where \(A\) generates a uniformly bounded \(C_0\)-group \(G(t)\) on the Banach space \(X.\) The second object of this paper is the following wave equation: \[ u_{tt} - c^2 u_{xx} + \varepsilon \beta u_t +(\omega_0^2 + \varepsilon \gamma \cos t) u = \varepsilon \alpha u^3,\quad t\geq 0,\;0<x<\pi \]
\[ u_x(0,t) = u_x(\pi,t)=0,\quad \beta>0 \] The fast dynamics behavior is segregated for a finite, resonant part of the spectrum and slow dynamics is found elsewhere. The manifold where the fast dynamics takes place is almost-invariant. It is to be noted that a number of the phenomena have been found in this paper, i.e. periodic and quasi-periodic solutions, are stable and open for experimental investigation.

MSC:

37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
35L70 Second-order nonlinear hyperbolic equations
35B32 Bifurcations in context of PDEs
74J30 Nonlinear waves in solid mechanics

Software:

CONTENT; MATCONT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bates, P.W., Jones, C.K.R.T.: Invariant manifolds for semilinear partial differential equations. Dyn. Rep. 2, 1–38 (1989) · Zbl 0674.58024
[2] Bates, P.W., Lu, K., Zeng, C.: Existence and persistence of invariant manifolds for semiflows in Banach space. Mem. Am. Math. Soc. 135(645) (1998) · Zbl 1023.37013
[3] Bates, P.W., Lu, K., Zeng, C.: Persistence of overflowing manifolds for semiflow. Commun. Pure Appl. Math. 12, 983–1046 (1999) · Zbl 0947.37009 · doi:10.1002/(SICI)1097-0312(199908)52:8<983::AID-CPA4>3.0.CO;2-O
[4] Buitelaar, R.P.: The method of averaging in Banach spaces. Thesis, University of Utrecht (1993) · Zbl 0791.35080
[5] Dhooge, A., Govaerts, W., Kuznetsov, Yu.A., Meijer, H.G.E., Sautois, B.: New features of the software MatCont for bifurcation analysis of dynamical systems. Math. Comput. Mod. Dyn. Syst. 147–175 (2008) · Zbl 1158.34302
[6] Jones, D.A., Titi, E.S.: C 1 approximations of inertial manifolds for dissipative nonlinear equations. J. Differ. Equ 127, 54–86 (1996) · Zbl 0855.35056 · doi:10.1006/jdeq.1996.0061
[7] Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, Berlin (2004) · Zbl 1082.37002
[8] Kuznetsov, Yu.A., Levitin, V.V.: Content: a multiplatform environment for analyzing dynamical systems (1995–2001). ftp.cwi.nl/pub/CONTENT
[9] Menon, G., Haller, G.: Infinite-dimensional geometric singular perturbation theory for the Maxwell–Bloch equations. SIAM J. Math. Anal. 33, 315–346 (2001) · Zbl 1077.78015 · doi:10.1137/S0036141000360458
[10] Rand, R.H., Newman, W.I., Denardo, B.C., Newman, A.L.: Dynamics of a nonlinear parametrically-excited partial differential equation. In: Proc. 1995 Design Eng. Tech. Conferences, vol. 3, pp. 57–68. ASME, DE-84-1 (1995) (See also Newman, Rand and Newman: Chaos 9, 242–253 (1999))
[11] Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, 2nd edn. Applied Math. Sciences, vol. 59. Springer, Berlin (2007) · Zbl 1128.34001
[12] Sanchez-Palencia, E.: Méthode de centrage et comportement des trajectoires dans l’espace des phases. Ser. A, C. R. Acad. Sci. 280, 105–107 (1975) · Zbl 0313.34042
[13] Sanchez-Palencia, E.: Méthode de centrage–estimation de l’erreur et comportement des trajectoires dans l’espace des phases. Int. J. Non-Linear Mech. 11, 251–263 (1976) · Zbl 0404.34050 · doi:10.1016/0020-7462(76)90004-4
[14] Seyranian, A.P., Mailybaev, A.P.: Multiparameter Stability Theory with Mechanical Applications. World Scientific, Singapore (2003) · Zbl 1047.34063
[15] Tuwankotta, J.M., Verhulst, F.: Symmetry and resonance in Hamiltonian systems. SIAM J. Appl. Math. 61, 1369–1385 (2000) · Zbl 1004.70015
[16] Verhulst, F.: Methods and Applications of Singular Perturbations, Boundary Layers and Multiple Timescale Dynamics. Springer, Berlin (2005). 340 pp. For comments and corrections see www.math.uu.nl/people/verhulst
[17] Wittenberg, R.W., Holmes, P.: The limited effectiveness of normal forms: a critical review and extension of local bifurcation studies of the Brusselator PDE. Physica D 100, 1–40 (1997) · Zbl 0893.34027 · doi:10.1016/S0167-2789(96)00187-X
[18] Zeng, C.: Persistence of invariant manifolds of semiflows with symmetry. Electron. J. Differ. Equ. 1998, 1–13 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.