×

Review on mathematical modelling of electroencephalography (EEG). (English) Zbl 1412.35339

Summary: The paper reviews mathematical and numerical aspects in EEG modelling and gives researchers new in this field an overview about the state-of-the-art results and techniques on the topic. The classical dipolar source model is presented for modelling the electrical activity of the brain and several discretization methods for solving the forward model are described. Theoretical results from the mathematical analysis of the forward and inverse problem are given and an overview of the most popular numerical methods for solving the inverse problem is presented. A specific case study for EEG modelling in neonates highlights current questions that are actually asked by the clinicians.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C50 Medical applications (general)
97N40 Numerical analysis (educational aspects)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35R30 Inverse problems for PDEs
92C55 Biomedical imaging and signal processing
92C20 Neural biology

Software:

OpenMEEG; FreeFem++
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adde, G.: Méthodes de traitement d’images appliquées au problème inverse en Magnéto-Electro-Encéphalographie. Thèse de doctorat (2005)
[2] Adde, G.; Clerc, M.; Faugeras, O.; Keriven, R.; Kybic, J.; Papadopoulo, T., Symmetric BEM formulation for the M/EEG forward problem, 524-535 (2003), Berlin · doi:10.1007/978-3-540-45087-0_44
[3] Akalin Acar, Z., Makeig, S.: Effects of forward model errors on EEG source localization. Brain Topogr. 26, 378-396 (2013) · doi:10.1007/s10548-012-0274-6
[4] Azizollahi, H., Darbas, M., Diallo, M.M., El Badia, A., Lohrengel, S.: EEG in neonates: forward modelling and sensitivity analysis with respect to variations of the conductivity. Math. Biosci. Eng. 15, 905-932 (2018). https://doi.org/10.3934/mbe.2018041. · Zbl 1406.92337 · doi:10.3934/mbe.2018041
[5] Azizollahi, H., Aarabi, A., Wallois, F.: Effects of uncertainty in head tissue conductivity and complexity on EEG forward modelling in neonates. Hum. Brain Mapp. 37(10), 3604-3622 (2016) · doi:10.1002/hbm.23263
[6] Baillet, S.: Toward Functional Brain Imaging of Cortical Electrophysiology Markovian Models for Magneto and Electroencephalogram Source Estimation and Experimental Assessments. Ph.D. thesis, University of Paris Orsay, France (1998)
[7] Baillet, S., Mosher, J.C., Leahy, R.M.: Electromagnetic brain mapping. IEEE Signal Process. Mag. 18(6), 14-30 (2001) · doi:10.1109/79.962275
[8] Baillet, S.; Tadel, F.; Leahy, R. M.; Mosher, J. C.; Delorme, A.; Makeig, S.; Oostenveld, R.; Hämäläinen, M.; Dalal, S. S.; Zumer, J.; Clerc, M.; Wolters, C. H.; Kiebel, S.; Jensen, O., Academic Software Toolboxes for the Analysis of MEG Data, Dubrovnik, Croatia
[9] Baratchart, L., Leblond, J., Mandrea, F., Saff, E.B.: How can meromorphic approximation help to solve some 2D inverse problems for the Laplacian? Inverse Probl. 15, 79-90 (1999) · Zbl 0921.35187 · doi:10.1088/0266-5611/15/1/012
[10] Baratchart, L., Ben Abda, A., Ben Hassen, F., Leblond, J.: Recovery of pointwise sources or small inclusions in 2D domains and rational approximation. Inverse Probl. 21, 51-74 (2005) · Zbl 1086.35121 · doi:10.1088/0266-5611/21/1/005
[11] Baratchart, L., Leblond, J., Marmorat, J.-P.: Inverse source problem in a 3D ball from best meromorphic approximation on 2D slices. Electron. Trans. Numer. Anal. 25, 41-53 (2006) · Zbl 1122.35149
[12] Bassila, R., Clerc, M., Leblond, J., Marmorat, J.-P., Papadopoulo, T.: (2008). http://www-sop.inria.fr/apics/FindSources3D/
[13] Berg, P., Scherg, M.: A fast method for forward computation of multiple-shell spherical head models. Electroencephalogr. Clin. Neurophysiol. 90, 58-64 (1994) · doi:10.1016/0013-4694(94)90113-9
[14] Chen, H., Halleza, F., Staelens, S.: Influence of skull conductivity perturbations on EEG dipole source analysis. Med. Phys. 37(8), 4475-4484 (2010) · doi:10.1118/1.3466831
[15] Cho, J.-H., Vorweck, J., Wolters, C.H., Knösche, T.R.: Influence of the head model on EEG and MEG source connectivity analyses. NeuroImage 10, 60-77 (2015) · doi:10.1016/j.neuroimage.2015.01.043
[16] Christiansen, S., Nédélec, J.C.: A preconditioner for the electric field integral equation based on Calderon formulas. SIAM J. Numer. Anal. 40, 1100-1135 (2002) · Zbl 1021.78010 · doi:10.1137/S0036142901388731
[17] Clerc, M., Kybic, J.: Cortical mapping by Laplace?Cauchy transmission using a boundary element method. Inverse Probl. 23, 2589-2601 (2007) · Zbl 1126.35091 · doi:10.1088/0266-5611/23/6/020
[18] Clerc, M., Leblond, J., Marmorat, J.-P., Papadopoulo, T.: Source localization in EEG using rational approximation on plane sections. Inverse Probl. 28, 055018 (2012) · Zbl 1238.92025 · doi:10.1088/0266-5611/28/5/055018
[19] Colton, D.L., Kress, R.: Integral Equation Methods in Scattering Theory. Pure and Applied Mathematics. Wiley, New York (1983) · Zbl 0522.35001
[20] Dannhauer, M., Lanfer, B., Wolters, C.H., Knösche, T.R.: Modelling of the human skull in EEG source analysis. Hum. Brain Mapp. 32(9), 1383-1399 (2011) · doi:10.1002/hbm.21114
[21] Darbas, M., Diallo, M.M., El Badia, A., Lohrengel, S.: An inverse dipole source problem in inhomogeneous media: application to the EEG source localization in neonates. Submitted · Zbl 1422.65356
[22] Diallo, M.M.: Problème inverse de sources en Electro-Encéphalo-Graphie chez le nouveau-né. Ph.D. thesis, Université de Picardie Jules Verne, Amiens, France (2017)
[23] El Badia, A., El Hajj, A.: Hölder stability estimates for some inverse pointwise source problems. C. R. Math. Acad. Sci. (Paris) 350(23-24), 1031-1035 (2012) · Zbl 1271.35029 · doi:10.1016/j.crma.2012.11.006
[24] El Badia, A., Farah, M.: Identification of dipole sources in an elliptic equation from boundary measurements: application to the inverse EEG problem. J. Inverse Ill-Posed Probl. 14, 331-353 (2006) · Zbl 1110.35102 · doi:10.1515/156939406777571012
[25] El Badia, A., Farah, M.: A stable recovering of dipole sources from partial boundary measurements. Inverse Probl. 26, 115006 (2010) · Zbl 1204.35173 · doi:10.1088/0266-5611/26/11/115006
[26] El Badia, A., Ha-Duong, T.: An inverse source problem in potential analysis. Inverse Probl. 16, 651-663 (2000) · Zbl 0963.35194 · doi:10.1088/0266-5611/16/3/308
[27] Engwer, C., Vorwerk, J., Ludewig, J., Wolters, C.H.: A discontinuous Galerkin method for the EEG forward problem. SIAM J. Sci. Comput. 39(1), B138-B164 (2017) · Zbl 1362.35123 · doi:10.1137/15M1048392
[28] Farah, M.: Problèmes inverses de sources et lien avec l’Electro-encéphalo-graphie. Ph.D. thesis, Université de Technologie de Compiègne, France (2007)
[29] Gargiulo, P., Belfiore, P., Friogeirsson, E.A., Vanhalato, S., Ramon, C.: The effect of fontanel on scalp EEG potentials in the neonate. Clin. Neurophysiol. 126, 1703-1710 (2015) · doi:10.1016/j.clinph.2014.12.002
[30] Geddes, L.A., Baker, L.E.: The specific resistance of biological material - a compendium of data for the biomedical engineer and physiologist. Med. Bio. Eng 5(3), 271-293 (1967) · doi:10.1007/BF02474537
[31] Geselowitz, D.B.: On bioelectric potentials in an homogeneous volume conductor. Biophys. J. 7, 1-11 (1967) · doi:10.1016/S0006-3495(67)86571-8
[32] Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M.: OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online 9, 45 (2010) · doi:10.1186/1475-925X-9-45
[33] Grech, R., Cassar, T., Muscat, J., Camilleri, K.P., Fabri, S.G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., Vanrumste, B.: Review on solving the inverse problem in EEG source analysis. J. Neuro. Rehabil. 5(25), 1-33 (2008). https://doi.org/10.1186/1743-0003-5-25 · doi:10.1186/1743-0003-5-25
[34] Hallez, H., Vanrumste, B., Van Hese, P., D’Asseler, Y., Lemahieu, I., Van de Walle, R.: A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization. Phys. Med. Biol. 50, 3787-3806 (2005) · doi:10.1088/0031-9155/50/16/009
[35] Hallez, H., Vanrumste, B., Grech, R., Muscat, J., De Clercq, W., Vergult, A., D’Asseler, Y., Camilleri, K.P., Fabri, S.G., Van Huffel, S.: Review on solving the forward problem in EEG source analysis. J. NeuroEng. Rehabil. 4(1), 46 (2007) · doi:10.1186/1743-0003-4-46
[36] Hämäläinen, M.S., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasamaa, O.V.: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65(2), 413-497 (1993) · doi:10.1103/RevModPhys.65.413
[37] Hämäläinen, M.S., Ilmoniemi, R.J.: Interpreting Measured Magnetic of the Brain: Estimates of Current Distributions. Technical Report TKK-F-A559, Helsinki University of Technology, Espoo (1984)
[38] Hämäläinen, M.S., Sarvas, J.: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 36(2), 165-171 (1989) · doi:10.1109/10.16463
[39] Haueisen, J., Tuch, D., Ramon, C., Schimpf, P., Wedeen, V., George, J., Belliveau, J.: The influence of brain tissue anisotropy on human EEG and MEG. NeuroImage 15, 159-166 (2002) · doi:10.1006/nimg.2001.0962
[40] Hecht, F., Pironneau, O., Le Hyaric, A., Ohtsuka, K.: FreeFem++ Manual (2014)
[41] Hédou, V.: A finite difference method to solve the forward problem in electroencephalography (EEG). J. Comput. Appl. Math. 167, 35-58 (2004) · Zbl 1061.78017 · doi:10.1016/j.cam.2003.09.044
[42] Kellogg, O.D.: Foundations of Potential Theory. Dover, New York (1953) · Zbl 0053.07301
[43] Kohn, R.V., Vogelius, M.: Relaxation of a variational method of impedance computed tomography. Commun. Pure Appl. Math. 40, 745-777 (1987) · Zbl 0659.49009 · doi:10.1002/cpa.3160400605
[44] Kozlov, V.A., Maz’ya, V.G., Fomin, A.V.: An iterative method for solving the Cauchy problem for elliptic equations. Comput. Math. Phys. 31, 45-52 (1991) · Zbl 0774.65069
[45] Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82. Springer, Berlin (1999) · Zbl 0920.45001
[46] Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., Papadopoulo, T.: A common formalism for the integral formulations of the forward EEG problem. IEEE Trans. Med. Imaging 24(1), 12-28 (2005) · doi:10.1109/TMI.2004.837363
[47] Kybic, J., Clerc, M., Faugeras, O., Keriven, R., Papadopoulo, T.: Fast multipole acceleration of the MEG/EEG boundary element method. Phys. Med. Biol. 50, 4695-4710 (2005) · doi:10.1088/0031-9155/50/19/018
[48] Kybic, J., Clerc, M., Faugeras, O., Keriven, R., Papadopoulo, T.: Generalized head models for MEG/EEG: boundary element method beyond nested volumes. Phys. Med. Biol. 51, 1333-1346 (2006) · doi:10.1088/0031-9155/51/5/021
[49] Lanfer, B., Scherg, M., Dannhauer, M., Knösche, T.R., Burger, M., Wolters, C.H.: Influences of skull segmentation inaccuracies on EEG source analysis. NeuroImage 62(1), 418-431 (2014) · doi:10.1016/j.neuroimage.2012.05.006
[50] Lew, S., Wolters, C.H., Dierkes, T., Röer, C., MacLeod, R.S.: Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis. Appl. Numer. Math. 59(8), 1970-1988 (2009) · Zbl 1165.92029 · doi:10.1016/j.apnum.2009.02.006
[51] Mordecai, A.: Nonlinear Programming: Analysis and Methods. Dover, New York (2003) · Zbl 1140.90002
[52] Lew, S., Silva, D.D., Choe, M., Ellen Grant, P., Okada, Y., Wolters, C.H., Hämäläinen, M.S.: Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model. NeuroImage 76, 282-293 (2013) · doi:10.1016/j.neuroimage.2013.03.017
[53] Love, A.E.H.: A Treatise of Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927) · JFM 53.0752.01
[54] Meijs, J.W.H., Weier, O.W., Peters, M.J., van Oosterom, A.: On the numerical accuracy of the boundary element method. IEEE Trans. Biomed. Eng. 36(10), 1038-1049 (1989) · doi:10.1109/10.40805
[55] Montes-Restrepo, V., van Mierlo, P., Strobbe, G., Staelens, S., Vandenberghe, S., Hallez, H.: Influence of skull modeling approaches on EEG source localization. Brain Topogr. 27(1), 95-111 (2014) · doi:10.1007/s10548-013-0313-y
[56] Mosher, J.C., Lewis, P.S., Leahy, R.M.: Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng. 39(6), 541-557 (1992) · doi:10.1109/10.141192
[57] de Munck, J.C., Peters, M.J.: A fast method to compute the potential in the multisphere model. IEEE Trans. Biomed. Eng. 40, 1166-1174 (1993) · doi:10.1109/10.245635
[58] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Applied Mathematical Sciences, vol. 144. Springer, New York (2001) · Zbl 0981.35002
[59] Odabaee, M., Tokariev, A., Layeghy, S., Mesbah, M., Colditz, P.B., Ramon, C., Vanhatalo, S.: Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models. NeuroImage 96, 73-80 (2014) · doi:10.1016/j.neuroimage.2014.04.007
[60] Ortiz G, J.E., Pillain, A., Rahmouni, L., Andriulli, F.P.: A Calderon regularized symmetric formulation for the electroencephalography forward problem. J. Comput. Phys., 1-21 (2018) · Zbl 1416.65319
[61] Papageorgakis, C.: Modèles de conductivité patient-spécifiques: caractérisation de l’os du crâne. Ph.D. thesis, INRIA Sophia, Université Côte d’Azur (2017)
[62] Pascual-Marqui, R.D.: Review of methods for solving the EEG inverse problem. Int. J. Bioelectromagn. 1, 75-86 (1999)
[63] Pascual-Marqui, R.D.: Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24D, 5-12 (2002). (Author’s version)
[64] Pursiainen, S., Lew, S., Wolters, C.H.: Forward and inverse effects of the complete electrode model in neonatal EEG. J. Neurophysiol. 117(3), 876-884 (2017) · doi:10.1152/jn.00427.2016
[65] Roche-Labarbe, N., Aarabi, A., Kongolo, G., Gondry-Jouet, C., Dümpelmann, M., Grebe, R., Wallois, F.: High-resolution electroencephalography and source localization in neonates. Hum. Brain Mapp. 29, 167-176 (2008) · doi:10.1002/hbm.20376
[66] Rush, S., Driscoll, D.A.: Current distribution in the brain from surface electrodes. Anesth. Analg. 47, 717-723 (1967)
[67] Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS-Kent, Boston (1996) · Zbl 1031.65047
[68] de Saint-Venant, A.J.C.B.: Mémoire sur la torsion des prismes. Mem. Divers Savants 14, 233-560 (1855)
[69] Salo, M.: Unique continuation for elliptic equations Notes Fall (2014)
[70] SimBio: A generic environment for bio-numerical simulations. https://www.mrt.uni-jena.de/simbio
[71] Steinbach, O., Wendland, W.L.: The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9, 191-216 (1998) · Zbl 0922.65076 · doi:10.1023/A:1018937506719
[72] Vorwerk, J.: Comparison of Numerical Approaches to the EEG Forward Problem. Master’s thesis, University of Münster, Germany (2011)
[73] Vorwerk, J.: New Finite Element Methods to Solve the EEG/MEG Forward Problem. Ph.D. thesis, University of Münster, Münster, Germany (2016) · Zbl 1334.92002
[74] Wolters, C.H., Köstler, H., Möller, C., Härdtlein, J., Grasedyck, L., Hackbusch, W.: Numerical mathematics of the subtraction method for the modelling of a current dipole in EEG source reconstruction using finite element head models. SIAM J. Sci. Comput. 30, 24-45 (2007) · Zbl 1159.92029 · doi:10.1137/060659053
[75] Wolters, C.H., Anwander, A., Tricoche, X., Weinstein, D., Koch, M.A., MacLeod, R.S.: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modelling. NeuroImage 30(3), 818-826 (2006) · doi:10.1016/j.neuroimage.2005.10.014
[76] Xu, X., Xu, B., He, B.: An alternative subspace approach to EEG dipole source localization. Phys. Med. Biol. 49, 327-343 (2004) · doi:10.1088/0031-9155/49/2/010
[77] Yitembe, B.R.: Reduction of Conductivity Uncertainty Propagations in the Inverse Problem of EEG Source Analysis. Ph.D. thesis, University of Gent (2011)
[78] Zhang, S.: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. Phys. Med. Biol. 40, 335-349 (1995) · doi:10.1088/0031-9155/40/3/001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.