×

Mixed convolved action principles in linear continuum dynamics. (English) Zbl 1336.74013

Summary: The paper begins with an overview of several of the classical integral formulations of elastodynamics, which highlights the natural appearance of temporal convolutions in the reciprocal theorem for such problems. This leads first to the formulation of a principle of virtual convolved action, as an extension of the principle of virtual work to dynamical problems. Then, to overcome the key shortcomings of Hamilton’s principle, the concept of mixed convolved action is developed for linear dynamical problems within the context of continuum solid mechanics. This new approach is broadly applicable to both reversible and irreversible phenomena without the need for special treatments, such as the artificial definition of Rayleigh dissipation functionals. The focus here is on linear elastic and viscoelastic media, which in the latter case is represented by classical Kelvin-Voigt and Maxwell models. Remarkably, for each problem type, the stationarity of the mixed convolved action provides not only the governing partial differential equations, but also the specified boundary and initial conditions, as its Euler-Lagrange equations. Thus, the entire initial/boundary value problem definition is encapsulated in a scalar mixed convolved action functional written in terms of displacements and stress impulses. The resulting formulations possess an elegant structure that provides a versatile framework for the development of novel computational methods, involving finite element representations in both space and time. We present perhaps the simplest approach by employing linear three-node triangular elements for two-dimensional analysis, along with linear shape functions over the temporal domain. Numerical examples are included to verify the formulation and to explore concepts of stress wave attenuation.

MSC:

74D05 Linear constitutive equations for materials with memory
74B05 Classical linear elasticity

Software:

FEAPpv
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hamilton W.R.: On a general method in dynamics. Philos. Trans. R. Soc. Lond. 124, 247-308 (1834) · doi:10.1098/rstl.1834.0017
[2] Hamilton W.R.: Second essay on a general method in dynamics. Philos. Trans. R. Soc. Lond. 125, 95-144 (1835) · doi:10.1098/rstl.1835.0009
[3] Lanczos C.: The Variational Principles of Mechanics. University of Toronto Press, Toronto (1949) · Zbl 0037.39901
[4] Goldstein H.: Classical Mechanics. Addison-Wesley Press, Cambridge (1950) · Zbl 0043.18001
[5] Rayleigh, J.W.S.: The Theory of Sound. I & II. Dover, New York (1877) (Second edition, reprint in 1945)
[6] Biot M.A.: Variational principles in irreversible thermodynamics with application to viscoelasticity. Phys. Rev. 97, 1463-1469 (1955) · Zbl 0065.42003 · doi:10.1103/PhysRev.97.1463
[7] Marsden J.E., Ratiu T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer, New York (1994) · Zbl 0811.70002 · doi:10.1007/978-1-4612-2682-6
[8] Sivaselvan M.V., Reinhorn A.M.: Lagrangian approach to structural collapse simulation. J. Eng. Mech. ASCE 132, 795-805 (2006) · doi:10.1061/(ASCE)0733-9399(2006)132:8(795)
[9] Sivaselvan M.V., Lavan O., Dargush G.F., Kurino H., Hyodo Y., Fukuda R., Sato K., Apostolakis G., Reinhorn A.M.: Numerical collapse simulation of large-scale structural systems using an optimization-based algorithm. Earthq. Eng. Struct. Dyn. 38, 655-677 (2009) · doi:10.1002/eqe.895
[10] Lavan O., Sivaselvan M.V., Reinhorn A.M., Dargush G.F.: Progressive collapse analysis through strength degradation and fracture in the mixed Lagrangian formulation. Earthq. Eng. Struct. Dyn. 38, 1483-1504 (2009) · doi:10.1002/eqe.914
[11] Lavan O.: Dynamic analysis of gap closing and contact in the mixed Lagrangian framework: toward progressive collapse prediction. J. Eng. Mech. ASCE 136, 979-986 (2010) · doi:10.1061/(ASCE)EM.1943-7889.0000146
[12] Apostolakis G., Dargush G.F.: Mixed Lagrangian formulation for linear thermoelastic response of structures. J. Eng. Mech. ASCE 138, 508-518 (2012) · doi:10.1061/(ASCE)EM.1943-7889.0000346
[13] Apostolakis G., Dargush G.F.: Mixed variational principles for dynamic response of thermoelastic and poroelastic continua. Int. J. Solids Struct. 50, 642-650 (2013) · doi:10.1016/j.ijsolstr.2012.10.021
[14] Apostolakis G., Dargush G.F.: Variational methods in irreversible thermoelasticity: theoretical developments and minimum principles for the discrete form. Acta Mech. 224, 2065-2088 (2013) · Zbl 1398.74062 · doi:10.1007/s00707-013-0843-0
[15] Kaufman A.N.: Dissipative Hamiltonian systems: a unifying principle. Phys. Lett. 100A, 419-422 (1984) · doi:10.1016/0375-9601(84)90634-0
[16] Morrison P.J.: Bracket formulation for irreversible classical fields. Phys. Lett. 100A, 423-427 (1984) · doi:10.1016/0375-9601(84)90635-2
[17] Grmela M.: Bracket formulation of dissipative fluid mechanics equations. Phys. Lett. 102A, 355-358 (1984) · doi:10.1016/0375-9601(84)90297-4
[18] Beris A.N., Edwards B.J.: Thermodynamics of Flowing Systems with Internal Microstructure. Oxford University Press, New York (1994)
[19] Grmela M., Ottinger H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620-6632 (1997) · doi:10.1103/PhysRevE.56.6620
[20] Ottinger H.C., Grmela M.: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56, 6633-6655 (1997) · doi:10.1103/PhysRevE.56.6633
[21] Gurtin M.E.: Variational principles in the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 13, 179-191 (1963) · Zbl 0123.40803 · doi:10.1007/BF01262691
[22] Gurtin M.E.: Variational principles for linear initial-value problems. Q. Appl. Math. 22, 252-256 (1964) · Zbl 0173.37602
[23] Gurtin M.E.: Variational principles for linear elastodynamics. Arch. Ration. Mech. Anal. 16, 34-50 (1964) · Zbl 0124.40001 · doi:10.1007/BF00248489
[24] Tonti E.: On the variational formulation for linear initial value problems. Ann. Mat. Pura Appl. XCV, 331-360 (1973) · Zbl 0278.49047 · doi:10.1007/BF02410725
[25] Tonti, E.; Rassias, G. M. (ed.); Rassias, T. M. (ed.), Inverse problem: its general solution (1985), New York · Zbl 0583.49010
[26] Oden J.T., Reddy J.N.: Variational Methods in Theoretical Mechanics. Springer, Berlin (1983) · Zbl 0518.73010 · doi:10.1007/978-3-642-68811-9
[27] Dargush G.F., Kim J.: Mixed convolved action. Phys. Rev. E 85, 066606 (2012) · doi:10.1103/PhysRevE.85.066606
[28] Dargush G.F.: Mixed convolved action for classical and fractional-derivative dissipative dynamical systems. Phys. Rev. E 86, 066606 (2012) · doi:10.1103/PhysRevE.86.066606
[29] Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland, Amsterdam (1987) · Zbl 0268.73005
[30] Eringen A.C., Suhubi E.S: Elastodynamics. Academic Press, New York (1974) · Zbl 0291.73018
[31] Aki K., Richards P.G.: Quantitative Seismology: Theory and Methods. W.H. Freeman, New York (1980)
[32] Wheeler L.T., Sternberg E.: Some theorems in classical elastodynamics. Arch. Ration. Mech. Anal. 31, 51-90 (1968) · Zbl 0187.47003
[33] Cadzow J.A.: Discrete calculus of variations. Int. J. Control 11, 393-407 (1970) · Zbl 0193.07601 · doi:10.1080/00207177008905922
[34] Graffi, D.: Sul teorema di reciprocita nella dinamica dei corpi elastici. Mem. Acad. Sci. Bologna 4, 103-109 (1946/1947) · Zbl 0036.40002
[35] Clough R.W., Penzien J.: Dynamics of Structures. McGraw-Hill, New York (1975) · Zbl 0357.73068
[36] Kirchhoff, G.: Vorlesungen über mechanic. B. G. Teubner, Leipzig (1897) · JFM 28.0603.01
[37] Love A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927) · JFM 53.0752.01
[38] Kane C., Marsden J.E., Ortiz M.: Symplectic-energy-momentum preserving variational integrators. J. Math. Phys. 40, 3357-3371 (1999) · Zbl 0983.70014 · doi:10.1063/1.532892
[39] Kane C., Marsden J.E., Ortiz M., West M.: Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Methods Eng. 49, 1295-1325 (2000) · Zbl 0969.70004 · doi:10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W
[40] Marsden J.E., West M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357-514 (2001) · Zbl 1123.37327 · doi:10.1017/S096249290100006X
[41] Veselov A.P.: Integrable discrete-time systems and difference operators. Funct. Anal. Appl. 22, 83-94 (1988) · Zbl 0694.58020 · doi:10.1007/BF01077598
[42] Apostolakis, G.: A Lagrangian Approach for Thermomechanics towards Damage and Deterioration of Structures. Ph.D. dissertation, University at Buffalo, State University of New York, Buffalo, NY (2010) · Zbl 0065.42003
[43] Zienkiewicz O.C., Taylor R.L., Zhu J.Z.: The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann, Oxford (2013) · Zbl 1307.74005
[44] Cook R.D., Malkus D.S., Plesha M.E., Witt R.J.: Concepts and Applications of Finite Element Analysis. Wiley, New York (2001)
[45] ABAQUS 6.9-1: Computer software. SIMULIA, Providence
[46] Rafiee-Dehkharghani, R., Aref, A.J., Dargush, G.F.: Characterization of multi-layered stress wave attenuators subjected to impulsive transient loadings. J. Eng. Mech. ASCE 141(4), 04014137 (2015)
[47] Ross B.: Fractional calculus. Math. Mag. 50, 115-122 (1977) · Zbl 0371.26004 · doi:10.2307/2689497
[48] Oldham K.B., Spanier J.: The Fractional Calculus. Academic Press, New York (1974) · Zbl 0292.26011
[49] Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science, Yverdon (1993) · Zbl 0818.26003
[50] Hardy G.H., Littlewood J.E.: Some properties of fractional integrals, I. Math. Z. 27, 565-606 (1928) · JFM 54.0275.05 · doi:10.1007/BF01171116
[51] Love E.R., Young L.C.: On fractional integration by parts. Proc. Lond. Math. Soc. Ser. 2 44, 1-35 (1938) · JFM 64.0197.02 · doi:10.1112/plms/s2-44.1.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.