Lyu, Pintao; De Waegenaere, Anja; Melenberg, Bertrand A multi-population approach to forecasting all-cause mortality using cause-of-death mortality data. (English) Zbl 1460.91231 N. Am. Actuar. J. 25, Suppl. 1, S421-S456 (2021). MSC: 91G05 91D20 PDF BibTeX XML Cite \textit{P. Lyu} et al., N. Am. Actuar. J. 25, S421--S456 (2021; Zbl 1460.91231) Full Text: DOI OpenURL
Daawin, Palma; Kim, Seonjin; Miljkovic, Tatjana Predictive modeling of obesity prevalence for the U.S. population. (English) Zbl 1411.91275 N. Am. Actuar. J. 23, No. 1, 64-81 (2019). MSC: 91B30 62P05 PDF BibTeX XML Cite \textit{P. Daawin} et al., N. Am. Actuar. J. 23, No. 1, 64--81 (2019; Zbl 1411.91275) Full Text: DOI OpenURL
Arnold-Gaille, Séverine; Sherris, Michael Forecasting mortality trends allowing for cause-of-death mortality dependence. (English) Zbl 1412.91218 N. Am. Actuar. J. 17, No. 3, 273-282 (2013). MSC: 91D30 62P05 PDF BibTeX XML Cite \textit{S. Arnold-Gaille} and \textit{M. Sherris}, N. Am. Actuar. J. 17, No. 3, 273--282 (2013; Zbl 1412.91218) Full Text: DOI OpenURL
Huang, Huaxiong; Milevsky, Moshe A.; Salisbury, Thomas S. Optimal retirement consumption with a stochastic force of mortality. (English) Zbl 1284.91162 Insur. Math. Econ. 51, No. 2, 282-291 (2012). MSC: 91B25 91B30 PDF BibTeX XML Cite \textit{H. Huang} et al., Insur. Math. Econ. 51, No. 2, 282--291 (2012; Zbl 1284.91162) Full Text: DOI arXiv OpenURL
Lin, X. Sheldon; Liu, Xiaoming Markov aging process and phase-type law of mortality. (English) Zbl 1480.91221 N. Am. Actuar. J. 11, No. 4, 92-109 (2007). MSC: 91G05 60J28 PDF BibTeX XML Cite \textit{X. S. Lin} and \textit{X. Liu}, N. Am. Actuar. J. 11, No. 4, 92--109 (2007; Zbl 1480.91221) Full Text: DOI OpenURL
Cossette, Hélène; Delwarde, Antoine; Denuit, Michel; Guillot, Frédérick; Marceau, Étienne Pension plan valuation and mortality projection: a case study with mortality data. (English) Zbl 1480.91195 N. Am. Actuar. J. 11, No. 2, 1-34 (2007). MSC: 91G05 91D20 62P05 PDF BibTeX XML Cite \textit{H. Cossette} et al., N. Am. Actuar. J. 11, No. 2, 1--34 (2007; Zbl 1480.91195) Full Text: DOI OpenURL
Koissi, Marie-Claire; Shapiro, Arnold F. Fuzzy formulation of the Lee-Carter model for mortality forecasting. (English) Zbl 1151.91576 Insur. Math. Econ. 39, No. 3, 287-309 (2006). MSC: 91B30 62P05 03E72 91D20 PDF BibTeX XML Cite \textit{M.-C. Koissi} and \textit{A. F. Shapiro}, Insur. Math. Econ. 39, No. 3, 287--309 (2006; Zbl 1151.91576) Full Text: DOI OpenURL
Pitacco, Ermanno Survival models in a dynamic context: a survey. (English) Zbl 1079.91050 Insur. Math. Econ. 35, No. 2, 279-298 (2004). MSC: 91B30 PDF BibTeX XML Cite \textit{E. Pitacco}, Insur. Math. Econ. 35, No. 2, 279--298 (2004; Zbl 1079.91050) Full Text: DOI OpenURL
Brouhns, Natacha; Denuit, Michel; Vermunt, Jeroen K. A Poisson log-bilinear regression approach to the construction of projected lifetables. (English) Zbl 1074.62524 Insur. Math. Econ. 31, No. 3, 373-393 (2002). MSC: 62P05 62M20 91D20 PDF BibTeX XML Cite \textit{N. Brouhns} et al., Insur. Math. Econ. 31, No. 3, 373--393 (2002; Zbl 1074.62524) Full Text: DOI OpenURL
Milevsky, Moshe A.; Promislow, S. David Mortality derivatives and the option to annuitise. (English) Zbl 1074.62530 Insur. Math. Econ. 29, No. 3, 299-318 (2001). MSC: 62P05 91B30 PDF BibTeX XML Cite \textit{M. A. Milevsky} and \textit{S. D. Promislow}, Insur. Math. Econ. 29, No. 3, 299--318 (2001; Zbl 1074.62530) Full Text: DOI OpenURL