×

Detecting and modeling critical dependence structures between random inputs of computer models. (English) Zbl 1457.62098

Summary: Uncertain information on input parameters of computer models is usually modeled by considering these parameters as random, and described by marginal distributions and a dependence structure of these variables. In numerous real-world applications, while information is mainly provided by marginal distributions, typically from samples, little is really known on the dependence structure itself. Faced with this problem of incomplete or missing information, risk studies that make use of these computer models are often conducted by considering independence of input variables, at the risk of including irrelevant situations. This approach is especially used when reliability functions are considered as black-box models. Such analyses remain weakened in absence of in-depth model exploration, at the possible price of a strong risk misestimation. Considering the frequent case where the reliability output is a quantile, this article provides a methodology to improve risk assessment, by exploring a set of pessimistic dependencies using a copula-based strategy. In dimension greater than two, a greedy algorithm is provided to build input regular vine copulas reaching a minimum quantile to which a reliability admissible limit value can be compared, by selecting pairwise components of sensitive influence on the result. The strategy is tested over toy models and a real industrial case-study. The results highlight that current approaches can provide non-conservative results.

MSC:

62G07 Density estimation
62G08 Nonparametric regression and quantile regression
62G32 Statistics of extreme values; tail inference
62H20 Measures of association (correlation, canonical correlation, etc.)
62H05 Characterization and structure theory for multivariate probability distributions; copulas
62P30 Applications of statistics in engineering and industry; control charts
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aas, K., C. Czado, A. Frigessi and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance Math. Econom. 44(2), 182-198. · Zbl 1165.60009
[2] Agrawal, S., Y. Ding, A. Saberi and Y. Ye (2012). Price of correlations in stochastic optimization. Oper. Res. 60(1), 150-162. · Zbl 1242.90140
[3] Bayarri, M., J. O. Berger, R. Paulo, J. Sacks, J. Cafeo, J. Cavendish, C. Lin and J. Tu (2007). A framework for validation of computer models. Technometrics 49(2), 138-154.
[4] Beaudoin, D. and L. Lakhal-Chaieb (2008). Archimedean copula model selection under dependent truncation. Stat. Med. 27(22), 4440-4454.
[5] Bedford, T., J. Quigley and L. Walls (2006). Expert elicitation for reliable system design. Statist. Sci. 21(4), 428-450. · Zbl 1129.62119
[6] Bedford, T. and R. M. Cooke (2001). Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intell. 32(1), 245-268. · Zbl 1314.62040
[7] Bedford, T. and R. M. Cooke (2001). Vines: a new graphical model for dependent random variables. Ann. Statist. 30(4), 1031-1068. · Zbl 1101.62339
[8] Benoumechiara N. (2017). dep-impact: A python package for conservative estimation of an output quantity of interest in reliabilty problems. Available at https://github.com/nazben/dep-impact.
[9] Bobkov,S. and M. Ledoux (2019). One-dimensional Empirical Measures, Order Statistics, and Kantorovich Transport Distances. American Mathematical Society, Providence. · Zbl 1454.60007
[10] Brabbia C., M.E. Conti and E. Tiezzi (2006). Management of Natural Ressources, Sustainable Development and Ecological Hazards. WIT Press, Southampton.
[11] Brechmann E. C., K. Aas and C. Czado (2012). Truncated regular vines in high dimensions with application to financial data. Canad. J. Statist. 40(1), 68-85. · Zbl 1274.62381
[12] Chazal, F., P. Massart and B. Michel (2016). Rates of convergence for robust geometric inference. Electron. J. Stat. 10(2), 2243-2286. · Zbl 1347.62055
[13] Cherubini, U., E. Luciano, W. Vecchiato (2004). Copula Methods in Finance.Wiley, Chichester. · Zbl 1163.62081
[14] Clemen, R. T. and T. Reilly (1999). Correlations and copulas for decision and risk analysis. Manag. Sci. 45(2), 208-224. · Zbl 1231.91166
[15] National Research Council (2012). Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation and Uncertainty Quantification. National Academies Press, Washington.
[16] Csorgo M. (1983). Quantile Processes with Statistical Applications. SIAM, Philadelphia PA. · Zbl 0518.62043
[17] Czado C. (2010). Pair-copula constructions of multivariate copulas. In P. Jaworski, F. Durante, W. K. Härdle, T. Rychlik (Eds.), Copula Theory and its Applications, pp. 93-109. Springer, New York.
[18] de Rocquigny, E., N. Devictor and S. Tarantola (2008). Uncertainty in Industrial Practice: a Guide to Quantitative Uncertainty Management. John Wiley & Sons, Chichester. · Zbl 1161.90001
[19] Demarta, S. and A. J. McNeil (2005). The t copula and related copulas. Int. Stat. Rev. 73(1), 111-129. · Zbl 1104.62060
[20] Dissmann, J., E. C. Brechmann, C. Czado and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Comput. Statist. Data Anal. 59, 52-69. · Zbl 1400.62114
[21] Dvoretzky, A., J. Kiefer and J. Wolfowitz (1956). Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Statist. 27(3), 642-669. · Zbl 0073.14603
[22] Echard, B., N. Gayton and M. Lemaire (2011). AK-MCS: an active learning reliability method combining kriging and Monte Carlo simulation. Struct. Saf. 33(2), 145-154.
[23] Echard, B., N. Gayton, M. Lemaire, N. Relun (2013). A combined importance sampling and kriging reliability method for small failure probabilities with time-demanding numerical models. Reliab. Eng. Syst. Saf. 111, 232-240.
[24] Embrechts, P., A. J. McNeil and D. Straumann (2002). Correlation and dependence in risk management: properties and pitfalls. In M. A. H. Dempster (Ed.), Risk Management: Value at Risk and Beyond, pp. 176-223. Cambridge University Press.
[25] Estes, A. C. and D. M. Frangopol (2005). Load rating versus reliability analysis. J. Struct. Eng. 131(5), 843-847.
[26] Evans, L. C. and R. F. Gariepyl (2015). Measure Theory and Fine Properties of Function. CRC Press, Boca Raton FL. · Zbl 1310.28001
[27] Fréchet M. (1951). Sur les tableaux de correlation dont les marges sont données. Ann. Univ. Lyon 9, 53-77. · Zbl 0045.22905
[28] Frees, E. W. and E. A. Valdez (1998). Understanding relationships using copulas. N. Am. Actuar. J. 2(1), 1-25. · Zbl 1081.62564
[29] Goda K. (2010). Statistical modeling of joint probability distribution using copula: application to peak and permanent displacement seismic demands. Struct. Saf. 32(2), 112-123.
[30] Grigoriu, M. and C. Turkstra (1979). Safety of structural systems with correlated resistances. Appl. Math. Model. 3(2), 130-136.
[31] Gruber, L. and C. Czado (2015). Sequential bayesian model selection of regular vine copulas. Bayesian Anal. 10(4), 937-963. · Zbl 1335.62048
[32] Guntenspergen G. R. (2014). Application of Threshold Concepts in Natural Resource Decision Making. Springer, New York.
[33] Haff. I. H. (2016). How to select a good vine. International FocuStat Workshop on Focused Information Criteria and Related Themes. Available at https://www.mn.uio.no/math/english/research/projects/focustat/workshops
[34] Helton J. C. (2011). Quantification of margins and uncertainties: conceptual and computational basis. Reliab. Eng. Syst. Saf. 96(9), 976-1013.
[35] Hoeffding W.(1940). Scale-invariant correlation theory. In N.I. Fisher and P. K. Sen (Eds.), The Collected Works of Wassily Hoeffding, pp. 57-107. Springer, New York.
[36] Iooss, B. and P. Lemaître (2015). A review on global sensitivity analysis methods. In G. Dellino and C. Meloni (Eds.), Uncertainty Management in Simulation-Optimization of Complex Systems, pp. 101-122, Springer, Boston. · Zbl 1332.90003
[37] Jiang, C., W. Zhang, X. Han, B. Y. Ni and L. J. Song (2015). A vine-copula-based reliability analysis method for structures with multidimensional correlation. J. Mech. Des. 137(6), 13 pages.
[38] Joe H. (1994). Multivariate extreme-value distributions with applications to environmental data. Canad. J. Statist. 22(1), 47-64. · Zbl 0804.62052
[39] Joe H. (1996). Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters. In L. Rüschendorf, B. Schweizer and M. D.Taylor (Eds.), Distributions with Fixed Marginals and Related Topics, pp. 120-141. IMS, Hayward.
[40] Karlin, S., K. Arrow and H. Scarf (1958). A min-max solution of an inventory problem. In J. K. Arrow, S. Karlin and H. Scarf (Eds.), Studies in the International Theory of Inventory and Productions, pp. 201-209. Standford University Press, Redwood.
[41] Kendall M. G. (1938). A new measure of rank correlation. Biometrika. 30(1/2), 81-93. · Zbl 0019.13001
[42] Kurowicka D. (2011). Optimal truncation of vines. In D. Kurowicka and H. Joe (Eds.), Dependence Modeling: Vine Copula Handbook, pp. 233-247. World Scientific Publishing Co., Singapore.
[43] Lemaire, M., A. Chateauneuf and J.-C. Mitteau (2010). Structural Reliability. Wiley, Hoboken NJ.
[44] Malevergne, Y., D. Sornette (2003). Testing the Gaussian copula hypothesis for financial assets dependences. Quant. Finance 3(4), 231-250. · Zbl 1408.62177
[45] Massart P. (1990). The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18(3), 1269-1283. · Zbl 0713.62021
[46] McKay, M. D., R. J. Beckman and W. J. Conover (2000). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55-61. · Zbl 0415.62011
[47] McNeil, A. J. and J. Nešlehoá (2009). Multivariate Archimedean copulas, d-monotone functions and l-norm symmetric distributions. Ann. Statist. 37(5B), 3059-3097. · Zbl 1173.62044
[48] Nápoles, O. M. (2010). Bayesian Belief Nets and Vines in Aviation Safety and other Applications. Ph.D. thesis, Delft University of Technology, Netherlands.
[49] Nápoles O. M. Counting vines. In D. Kurowicka and H. Joe (Eds.), Dependence Modeling: Vine Copula Handbook, pp. 189-218. World Scientific Publishing Co., Singapore.
[50] Nelsen, R. B. (2006). An Introduction to Copulas. Second edition. Springer, New York. · Zbl 1152.62030
[51] Newey, W. K. and D. McFadden (1994). Large sample estimation and hypothesis testing. Handb. Econom. 4, 2111-2245.
[52] Osborne, M. A., R. Garnett, S. J. Roberts (2009). Gaussian processes for global optimization. 3rd International Conference on Learning and Intelligent Optimization (LION 3).
[53] Pass B. (2015). Multi-marginal optimal transport: theory and applications. ESAIM Math. Model. Numer. Anal. 49(6), 1771-1790. · Zbl 1330.49050
[54] Robbins, H. and S. Monro (1951). A stochastic approximation method. Ann. Math. Stat. 22(3), 400-407. · Zbl 0054.05901
[55] Rubino, G. and B. Tuffin (2009). Rare Event Simulation Using Monte Carlo Methods. Wiley, Chichester. · Zbl 1159.65003
[56] Saltelli, A., K. Chan and E. M. Scott (2000). Sensitivity Analysis. Wiley, New York. · Zbl 0961.62091
[57] Schoelzel, C. and P. Friederichs (2008). Multivariate non-normally distributed random variables in climate research - Introduction to the copula approach. Nonlin. Processes Geophys. 15(5), 761-772.
[58] Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229-231. · Zbl 0100.14202
[59] Nilsen, T. and T. Aven (2003). Models and model uncertainty in the context of risk analysis. Reliab. Eng. Syst. Saf. 79(3), 309-317.
[60] Tang, X. S., D. Q. Li, G. Rong, K. K. Phoon and C. B. Zhou (2013). Impact of copula selection on geotechnical reliability under incomplete probability information. Comput. Geotech. 49, 264-278.
[61] Tang, X. S., D. Q. Li, C. B. Zhou and K. K. Phoon (2015). Copula-based approaches for evaluating slope reliability under incomplete probability information. Struct. Saf. 52, 90-99.
[62] Thoft-Christensen, P. and J. D. Sørensen (1982). Reliability of structural systems with correlated elements. Appl. Math. Model. 6(3), 171-178.
[63] Torre, E., S. Marelli, P. Embrechts and B. Sudret (2019). Data-driven polynomial chaos expansion for machine learning regression. J. Comput. Phys. 388, 601-623. · Zbl 1453.62565
[64] Torre, E., S. Marelli, P. Embrechts and B. Sudret (2019). A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas. Prob. Eng. Mech. 55, 1-16.
[65] Van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge University Press. · Zbl 0910.62001
[66] Villani, C. (2008). Optimal Transport: Old and New. Springer, Berlin. · Zbl 1156.53003
[67] Zondervan-Zwijnenburg, M., W. van de Schoot-Hubeek, K. Lek, H. Hoijtink and R. van de Schoot (2017). Application and Evaluation of an Expert Judgment Elicitation Procedure for Correlations. Front. Psychol. 8, 1-15.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.