×

Uncertainty quantification in multiscale simulation of woven fiber composites. (English) Zbl 1440.74102

Summary: Woven fiber composites have been increasingly employed as light-weight materials in aerospace, construction, and transportation industries due to their superior properties. These materials possess a hierarchical structure that necessitates the use of multiscale simulations in their modeling. To account for the inherent uncertainty in materials, such simulations must be integrated with statistical uncertainty quantification (UQ) and propagation (UP) methods. However, limited advancement has been made in this regard due to the significant computational costs and complexities in modeling spatially correlated structural variations coupled at different scales. In this work, a non-intrusive approach is proposed for multiscale UQ and UP to address these limitations. We introduce the top-down sampling method that allows to model non-stationary and continuous (but not differentiable) spatial variations of uncertainty sources by creating nested random fields (RFs) where the hyperparameters of an ensemble of RFs is characterized by yet another RF. We employ multi-response Gaussian RFs in top-down sampling and leverage statistical techniques (such as metamodeling and dimensionality reduction) to address the considerable computational costs of multiscale simulations. We apply our approach to quantify the uncertainty in a cured woven composite due to spatial variations of yarn angle, fiber volume fraction, and fiber misalignment angle. Our results indicate that, even in linear analysis, the effect of uncertainty sources on the material’s response could be significant.

MSC:

74E30 Composite and mixture properties
74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
60-08 Computational methods for problems pertaining to probability theory

Software:

Spearmint
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Rahimi-Aghdam, S.; Bažant, Z. P.; Caner, F. C., Diffusion-controlled and creep-mitigated ASR damage via microplane model. II: Material degradation, drying, and verification, J. Eng. Mech., 143, 2 (2017)
[2] Bažant, Z. P.; Rahimi-Aghdam, S., Diffusion-controlled and creep-mitigated ASR damage via microplane model. I: Mass concrete, J. Eng. Mech., 143, 2 (2017)
[3] Rezakhani, R.; Cusatis, G., Asymptotic expansion homogenization of discrete fine-scale models with rotational degrees of freedom for the simulation of quasi-brittle materials, J. Mech. Phys. Solids, 88, 320-345 (2016) · Zbl 1474.74084
[4] Rezakhani, R.; Zhou, X. W.; Cusatis, G., Adaptive multiscale homogenization of the lattice discrete particle model for the analysis of damage and fracture in concrete, Int. J. Solids Struct., 125, 50-67 (2017)
[5] Matouš, K., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J. Comput. Phys., 330, 192-220 (2017)
[6] Chernatynskiy, A.; Phillpot, S. R.; LeSar, R., Uncertainty quantification in multiscale simulation of materials: a prospective, Annu. Rev. Mater. Res., 43, 1, 157-182 (2013)
[7] Liu, W. K., Complexity science of multiscale materials via stochastic computations, Internat. J. Numer. Methods Engrg., 80, 6-7, 932-978 (2009) · Zbl 1176.74058
[8] Apley, D. W.; Liu, J.; Chen, W., Understanding the effects of model uncertainty in robust design with computer experiments, J. Mech. Des., 128, 4, 945-958 (2006)
[9] Bessa, M. A., A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality, Comput. Methods Appl. Mech. Engrg., 320, 633-667 (2017) · Zbl 1439.74014
[10] Greene, M. S., Computational uncertainty analysis in multiresolution materials via stochastic constitutive theory, Comput. Methods Appl. Mech. Engrg., 200, 1-4, 309-325 (2011) · Zbl 1225.74008
[11] Greene, M. S., A generalized uncertainty propagation criterion from benchmark studies of microstructured material systems, Comput. Methods Appl. Mech. Engrg., 254, 271-291 (2013) · Zbl 1297.74011
[12] Ilyani Akmar, A. B., Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties, Compos. Struct., 116, 1-17 (2014)
[13] Kouchmeshky, B.; Zabaras, N., Microstructure model reduction and uncertainty quantification in multiscale deformation processes, Comput. Mater. Sci., 48, 2, 213-227 (2010)
[14] McFarland, J., Calibration and uncertainty analysis for computer simulations with multivariate output, AIAA J., 46, 5, 1253-1265 (2008)
[15] S. Reeve, A. Strachan, Error correction in multi-fidelity molecular dynamics simulations using functional uncertainty quantification. 2016. arXiv preprint arXiv:1603.00599.
[16] Sasikumar, P.; Suresh, R.; Gupta, S., Stochastic model order reduction in uncertainty quantification of composite structures, Compos. Struct., 128, 21-34 (2015)
[17] Savvas, D.; Stefanou, G., Assessment of the effect of microstructural uncertainty on the macroscopic properties of random composite materials, J. Compos. Mater., Article 0021998316677333 pp. (2016)
[18] Sriramula, S.; Chryssanthopoulos, M. K., Quantification of uncertainty modelling in stochastic analysis of FRP composites, Composites A, 40, 11, 1673-1684 (2009)
[19] Stainforth, D. A., Uncertainty in predictions of the climate response to rising levels of greenhouse gases, Nature, 433, 7024, 403-406 (2005)
[20] Zhang, J.; Shields, M. D., On the quantification and efficient propagation of imprecise probabilities resulting from small datasets, Mech. Syst. Signal Process., 98, 465-483 (2018) · Zbl 1440.62099
[21] Bostanabad, R., Stochastic microstructure characterization and reconstruction via supervised learning, Acta Mater., 103, 89-102 (2016)
[22] Bostanabad, R.; Chen, W.; Apley, D. W., Characterization and reconstruction of 3D stochastic microstructures via supervised learning, J. Microsc., 264, 3, 282-297 (2016)
[23] Bostanabad, R., Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques, Prog. Mater. Sci., 95, 1-41 (2018)
[24] Komeili, M.; Milani, A., The effect of meso-level uncertainties on the mechanical response of woven fabric composites under axial loading, Comput. Struct., 90, 163-171 (2012)
[25] Tabiei, A.; Yi, W., Comparative study of predictive methods for woven fabric composite elastic properties, Compos. Struct., 58, 1, 149-164 (2002)
[26] Tabiei, A.; Ivanov, I., Fiber reorientation in laminated and woven composites for finite element simulations, J. Thermoplast. Compos. Mater., 16, 5, 457-474 (2003)
[27] Vanaerschot, A., Variability in composite materials properties, (Applied Mechanics and Materials (2015), Trans Tech Publ)
[28] Requena, G., 3D-Quantification of the distribution of continuous fibres in unidirectionally reinforced composites, Composites A, 40, 2, 152-163 (2009)
[29] Mahadik, Y.; Hallett, S., Effect of fabric compaction and yarn waviness on 3D woven composite compressive properties, Composites A, 42, 11, 1592-1600 (2011)
[30] Lin, H., Automated geometric modelling of textile structures, Text. Res. J., 82, 16, 1689-1702 (2012)
[31] Zulkifli, R., Interlaminar fracture toughness of multi-layer woven silk/epoxy composites treated with coupling agent, Eur. J. Sci. Res., 27, 3, 454-462 (2009)
[32] Feyel, F.; Chaboche, J.-L., FE 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Comput. Methods Appl. Mech. Engrg., 183, 3, 309-330 (2000) · Zbl 0993.74062
[33] Feyel, F., A multilevel finite element method (FE 2) to describe the response of highly non-linear structures using generalized continua, Comput. Methods Appl. Mech. Engrg., 192, 28, 3233-3244 (2003) · Zbl 1054.74727
[34] Liu, Z.; Bessa, M.; Liu, W. K., Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 306, 319-341 (2016) · Zbl 1436.74070
[35] Liu, Z.; Fleming, M.; Liu, W. K., Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials, Comput. Methods Appl. Mech. Engrg., 330, 547-577 (2018) · Zbl 1439.74063
[36] Liu, Z., Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity, (Advances in Computational Plasticity (2018), Springer), 221-242 · Zbl 1493.74017
[37] Tang, S.; Zhang, L.; Liu, W. K., From virtual clustering analysis to self-consistent clustering analysis: a mathematical study, Comput. Mech., 1-18 (2018)
[38] A. Vanaerschot, et al., Identification and quantification of variability in woven composite materials based on carbon fibre weaves. 2015.
[39] Simpson, T. W.; Lin, D. K.; Chen, W., Sampling strategies for computer experiments: design and analysis, Int. J. Reliab. Appl., 2, 3, 209-240 (2001)
[40] Jin, R.; Chen, W.; Sudjianto, A., An efficient algorithm for constructing optimal design of computer experiments, J. Statist. Plann. Inference, 134, 1, 268-287 (2005) · Zbl 1066.62075
[41] Shields, M. D.; Zhang, J., The generalization of Latin hypercube sampling, Reliab. Eng. Syst. Saf., 148, 96-108 (2016)
[42] Chiachio, M.; Chiachio, J.; Rus, G., Reliability in composites-A selective review and survey of current development, Composites B, 43, 3, 902-913 (2012)
[43] Savvas, D., Effect of waviness and orientation of carbon nanotubes on random apparent material properties and RVE size of CNT reinforced composites, Compos. Struct., 152, 870-882 (2016)
[44] Savvas, D.; Stefanou, G.; Papadrakakis, M., Determination of RVE size for random composites with local volume fraction variation, Comput. Methods Appl. Mech. Engrg., 305, 340-358 (2016) · Zbl 1425.74039
[45] Hsiao, H.; Daniel, I., Effect of fiber waviness on the high-strain-rate behavior of composites, J. Thermoplast. Compos. Mater., 12, 5, 412-422 (1999)
[46] Hsiao, H.; Daniel, I., Nonlinear elastic behavior of unidirectional composites with fiber waviness under compressive loading, J. Eng. Mater. Technol., 118, 4, 561-570 (1996)
[47] Hsiao, H.; Daniel, I., Effect of fiber waviness on stiffness and strength reduction of unidirectional composites under compressive loading, Compos. Sci. Technol., 56, 5, 581-593 (1996)
[48] Gallager, R. G., Stochastic Processes: Theory for Applications (2013), Cambridge University Press · Zbl 1304.60003
[49] Grigoriu, M., On the spectral representation method in simulation, Probab. Eng. Mech., 8, 2, 75-90 (1993)
[50] Jiang, Z.; Chen, W.; Burkhart, C., Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization, J. Microsc., 252, 2, 135-148 (2013)
[51] Quiblier, J. A., A new three-dimensional modeling technique for studying porous media, J. Colloid Interface Sci., 98, 1, 84-102 (1984)
[52] Cahn, J. W., Phase separation by spinodal decomposition in isotropic systems, J. Chem. Phys., 42, 1, 93-+ (1965)
[53] S.C. Yu, et al., Characterization and design of functional quasi-random nanostructured materials using spectral density function, in: Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 2b, 2016, pp. 135-145.
[54] Deodatis, G.; Micaletti, R. C., Simulation of highly skewed non-Gaussian stochastic processes, J. Eng. Mech., 127, 12, 1284-1295 (2001)
[55] Lagaros, N. D.; Stefanou, G.; Papadrakakis, M., An enhanced hybrid method for the simulation of highly skewed non-Gaussian stochastic fields, Comput. Methods Appl. Mech. Engrg., 194, 45, 4824-4844 (2005) · Zbl 1094.65010
[56] Popescu, R.; Deodatis, G.; Prevost, J. H., Simulation of homogeneous nonGaussian stochastic vector fields, Probab. Eng. Mech., 13, 1, 1-13 (1998)
[57] Grigoriu, M., Applied Non-Gaussian Processes: Examples, Theory, Simulation, Linear Random Vibration, and MATLAB Solutions (1995), Prentice Hall · Zbl 0832.60003
[58] Lindskog, F., Modelling Dependence with Copulas and Applications to Risk Management (2000), ETH Zürich, (Master Thesis)
[59] Frees, E. W.; Wang, P., Credibility using copulas, N. Am. Actuar. J., 9, 2, 31-48 (2005) · Zbl 1085.62121
[60] Rosenberg, J. V.; Schuermann, T., A general approach to integrated risk management with skewed, fat-tailed risks, J. Financ. Econ., 79, 3, 569-614 (2006)
[61] Noh, Y.; Choi, K.; Du, L., Reliability-based design optimization of problems with correlated input variables using a Gaussian Copula, Struct. Multidiscip. Optim., 38, 1, 1-16 (2009)
[62] Genest, C.; Favre, A.-C., Everything you always wanted to know about copula modeling but were afraid to ask, J. Hydrol. Eng., 12, 4, 347-368 (2007)
[63] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (2003), Courier Corporation
[64] Stefanou, G., The stochastic finite element method: Past, present and future, Comput. Methods Appl. Mech. Engrg., 198, 9, 1031-1051 (2009) · Zbl 1229.74140
[65] Stefanou, G.; Savvas, D.; Papadrakakis, M., Stochastic finite element analysis of composite structures based on material microstructure, Compos. Struct., 132, 384-392 (2015)
[66] Xu, X. F., A multiscale stochastic finite element method on elliptic problems involving uncertainties, Comput. Methods Appl. Mech. Engrg., 196, 25, 2723-2736 (2007) · Zbl 1173.74449
[67] Xiu, D.; Karniadakis, G. E., Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Comput. Methods Appl. Mech. Engrg., 191, 43, 4927-4948 (2002) · Zbl 1016.65001
[68] Liu, W. K.; Belytschko, T.; Mani, A., Random field finite elements, Internat. J. Numer. Methods Engrg., 23, 10, 1831-1845 (1986) · Zbl 0597.73075
[69] Der Kiureghian, A.; Ke, J.-B., The stochastic finite element method in structural reliability, (Stochastic Structural Mechanics (1987), Springer), 84-109
[70] Deodatis, G., Weighted integral method. I: stochastic stiffness matrix, J. Eng. Mech., 117, 8, 1851-1864 (1991)
[71] Vanmarcke, E.; Grigoriu, M., Stochastic finite element analysis of simple beams, J. Eng. Mech., 109, 5, 1203-1214 (1983)
[72] Spanos, P. D.; Ghanem, R., Stochastic finite element expansion for random media, J. Eng. Mech., 115, 5, 1035-1053 (1989)
[73] Argyris, J.; Papadrakakis, M.; Stefanou, G., Stochastic finite element analysis of shells, Comput. Methods Appl. Mech. Engrg., 191, 41, 4781-4804 (2002) · Zbl 1019.74037
[74] Falsone, G.; Ferro, G., An exact solution for the static and dynamic analysis of FE discretized uncertain structures, Comput. Methods Appl. Mech. Engrg., 196, 21, 2390-2400 (2007) · Zbl 1173.74414
[75] Van den Nieuwenhof, B.; Coyette, J.-P., Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties, Comput. Methods Appl. Mech. Engrg., 192, 33, 3705-3729 (2003) · Zbl 1054.74061
[76] Hassaninia, I., Characterization of the optical properties of turbid media by supervised learning of scattering patterns, Sci. Rep., 7, 1, Article 15259 pp. (2017)
[77] Sacks, J., Design and analysis of computer experiments, Statist. Sci., 409-423 (1989)
[78] Kennedy, M. C.; O’Hagan, A., Predicting the output from a complex computer code when fast approximations are available, Biometrika, 87, 1, 1-13 (2000) · Zbl 0974.62024
[79] Simpson, T. W., Metamodels for computer-based engineering design: survey and recommendations, Eng. Comput., 17, 2, 129-150 (2001) · Zbl 0985.68599
[80] Martin, J. D.; Simpson, T. W., Use of kriging models to approximate deterministic computer models, AIAA J., 43, 4, 853-863 (2005)
[81] Plumlee, M.; Apley, D. W., Lifted Brownian kriging models, Technometrics (2016), (just-accepted)
[82] Tao, S., Enhanced gaussian process metamodeling and collaborative optimization for vehicle suspension design optimization, (ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2017), American Society of Mechanical Engineers)
[83] Bostanabad, R., Leveraging the nugget parameter for efficient Gaussian process modeling, Internat. J. Numer. Methods Engrg., n/a-n/a (2018)
[84] C.E. Rasmussen, Gaussian processes for machine learning. 2006. · Zbl 1177.68165
[85] Xu, H. Y., A descriptor-based design methodology for developing heterogeneous microstructural materials system, J. Mech. Des., 136, 5, Article 051007 pp. (2014)
[86] Snoek, J.; Larochelle, H.; Adams, R. P., Practical bayesian optimization of machine learning algorithms, (Advances in Neural Information Processing Systems (2012))
[87] Kennedy, M. C.; O’Hagan, A., Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63, 3, 425-464 (2001) · Zbl 1007.62021
[88] Arendt, P. D.; Apley, D. W.; Chen, W., Quantification of model uncertainty: Calibration, model discrepancy, and identifiability, J. Mech. Des., 134, 10, Article 100908 pp. (2012)
[89] Arendt, P. D., Improving identifiability in model calibration using multiple responses, J. Mech. Des., 134, 10, Article 100909 pp. (2012)
[90] Bayarri, M. J., A framework for validation of computer models, Technometrics (2012)
[91] Arendt, P. D.; Apley, D. W.; Chen, W., A preposterior analysis to predict identifiability in the experimental calibration of computer models, IIE Trans., 48, 1, 75-88 (2016)
[92] Green, S., Mechanical modelling of 3D woven composites considering realistic unit cell geometry, Compos. Struct., 118, 284-293 (2014)
[93] Peng, X.; Cao, J., A dual homogenization and finite element approach for material characterization of textile composites, Composites B, 33, 1, 45-56 (2002)
[94] Huang, H.; Waas, A. M., Compressive response of Z-pinned woven glass fiber textile composite laminates: Modeling and computations, Compos. Sci. Technol., 69, 14, 2338-2344 (2009)
[95] Zhang, W., A non-orthogonal material model of woven composites in the preforming process, CIRP Ann-Manuf. Technol. (2017)
[96] Melro, A., Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II-micromechanical analyses, Int. J. Solids Struct., 50, 11, 1906-1915 (2013)
[97] Kirane, K.; Salviato, M.; Bažant, Z. P., Microplane triad model for simple and accurate prediction of orthotropic elastic constants of woven fabric composites, J. Compos. Mater., 50, 9, 1247-1260 (2016)
[98] Sobol, I. M., On quasi-Monte Carlo integrations, Math. Comput. Simulation, 47, 2-5, 103-112 (1988)
[99] Sobol’, I. Y.M., On the distribution of points in a cube and the approximate evaluation of integrals, Zh. Vychisl. Mat. Mat. Fiz., 7, 4, 784-802 (1967) · Zbl 0185.41103
[100] Cressie, N., The origins of kriging, Math. Geol., 22, 3, 239-252 (1990) · Zbl 0964.86511
[101] Joseph, V. R., Limit kriging, Technometrics, 48, 4, 458-466 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.