×

zbMATH — the first resource for mathematics

A graphical approach to a model of a neuronal tree with a variable diameter. (English) Zbl 1370.92033
Summary: Tree-like structures are ubiquitous in nature. In particular, neuronal axons and dendrites have tree-like geometries that mediate electrical signaling within and between cells. Electrical activity in neuronal trees is typically modeled using coupled cable equations on multi-compartment representations, where each compartment represents a small segment of the neuronal membrane. The geometry of each compartment is usually defined as a cylinder or, at best, a surface of revolution based on a linear approximation of the radial change in the neurite. The resulting geometry of the model neuron is coarse, with non-smooth or even discontinuous jumps at the boundaries between compartments. We propose a hyperbolic approximation to model the geometry of neurite compartments, a branched, multi-compartment extension, and a simple graphical approach to calculate steady-state solutions of an associated system of coupled cable equations. A simple case of transient solutions is also briefly discussed.

MSC:
92C20 Neural biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1113/jphysiol.1974.sp010571
[2] Holmes, Electrotonic length estimates in neurons with dendritic tapering or somatic shunt, J. Neurophysiol. 68 pp 1421– (1992)
[3] DOI: 10.1016/S0006-3495(62)86953-7
[4] Rall, Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons, J. Neurophysiol. 30 pp 884– (1967)
[5] DOI: 10.1016/0014-4886(66)90023-9
[6] DOI: 10.1016/S0006-3495(74)85948-5
[7] DOI: 10.1038/82910
[8] DOI: 10.1007/BF00276954 · Zbl 0587.92012
[9] DOI: 10.1126/science.290.5492.739
[10] DOI: 10.1038/nrn810
[11] DOI: 10.1016/S0925-2312(02)00839-1 · Zbl 01927983
[12] Vetter, Propagation of action potential in dendrites depends on dendritic morphology, J. Neurophysiol. 85 pp 926– (2001)
[13] Kelvin, On the theory of the electric telegraph, Proc. Roy. Soc. (London) 7 pp 382– (1855)
[14] DOI: 10.1016/0014-4886(59)90046-9
[15] Rall, Methods in Neuronal Modeling pp 9– (1989)
[16] Rall, Core conductor theory and cable properties of neurons, Comprehensive Physiology pp 39– (2011)
[17] DOI: 10.1016/0014-4886(60)90029-7
[18] DOI: 10.1111/j.1749-6632.1962.tb54120.x
[19] DOI: 10.1016/S0006-3495(69)86467-2
[20] DOI: 10.1016/S0006-3495(73)86014-X
[21] DOI: 10.1016/j.mbs.2005.03.009 · Zbl 1071.92004
[22] DOI: 10.1007/s004220050429 · Zbl 0946.92001
[23] DOI: 10.1016/S0006-3495(93)81038-5
[24] DOI: 10.1016/S0006-3495(93)81038-5
[25] DOI: 10.1016/S0006-3495(93)81039-7
[26] DOI: 10.1016/S0006-3495(94)80836-7
[27] DOI: 10.1016/S0006-3495(84)84063-1
[28] DOI: 10.1016/S0006-3495(92)81631-4
[29] DOI: 10.1016/j.mbs.2004.02.007 · Zbl 1049.92007
[30] DOI: 10.1152/jn.00781.2001
[31] Baer, Techniques for obtaining analytical solutions for Rall’s model neuron, J. Neurosci. Methods 20 pp 151– (1987)
[32] DOI: 10.1007/s00422-007-0161-5 · Zbl 1122.92007
[33] DOI: 10.1111/j.1469-7793.2001.00445.x
[34] DOI: 10.1016/S0959-4388(03)00075-8
[35] DOI: 10.1016/S0006-8993(02)02488-5
[36] DOI: 10.1038/382363a0
[37] DOI: 10.1038/nn1826
[38] DOI: 10.1016/0306-4522(96)00139-X
[39] DOI: 10.1126/science.126.3271.454
[40] Abrikosov, Methods of Quantum Field Theory in Statistical Physics (1963) · Zbl 0135.45003
[41] Akhiezer, Quantum Electrodynamics (1965)
[42] Berestetskii, Relativistic Quantum Theory (1971)
[43] DOI: 10.1103/PhysRev.76.749 · Zbl 0037.12406
[44] DOI: 10.1103/PhysRev.76.769 · Zbl 0038.13302
[45] Feynman, QED: The Strange Theory of Light and Matter (1985)
[46] DOI: 10.1511/2005.52.957
[47] Mattuck, A Guide to Feynmann Diagrams in theMany-Body Problems (1992)
[48] Weinberg, The Quantum Theory of Fields Volumes 1–3 (1998)
[49] DOI: 10.1063/1.2938698 · Zbl 1152.81557
[50] Nikiforov, Classical Orthogonal Polynomials of a Discrete Variable (1991)
[51] Smirnov, The method of Kharmonics and the shell model, Sov. J. Part. Nucl. 8 pp 344– (1977)
[52] DOI: 10.1007/BF01043553
[53] DOI: 10.1016/0378-4371(92)90474-5
[55] DOI: 10.1007/s11005-008-0239-6 · Zbl 1164.81003
[56] DOI: 10.4303/jpm/S090603 · Zbl 1264.81173
[57] DOI: 10.1016/j.aop.2010.02.020 · Zbl 1198.81084
[58] DOI: 10.1007/s11232-010-0023-5 · Zbl 1201.81046
[59] The ime-dependent Schrödinger Equation, Riccati Equation and Airy Functionshttp://arxiv.org/pdf/0903.3608.pdf
[60] Suazo, The Riccati differential equation and a diffusion-type equation, N. Y. J. Math. 17 pp 225– (2011) · Zbl 1225.35114
[61] DOI: 10.1088/0031-8949/81/05/055006 · Zbl 1189.81059
[62] Jack, Electric Current Flow in Excitable Cells (1975)
[63] http://mtbi.asu.edu/research/archive
[64] DOI: 10.1090/S0002-9904-1942-07628-2 · Zbl 0063.00896
[65] Abramowitz, Handbook of Mathematical Functions (1972)
[66] Andrews, Special Functions (1999)
[68] Hartman, Ordinary Differential Equations (1973) · Zbl 0281.34001
[69] DOI: 10.1090/S0002-9904-1921-03381-7
[70] Kolmogorov, Introductory Real Analysis pp 1– (1970)
[71] Nikiforov, Lectures on Equations and Methods of Mathematical Physics (2009)
[72] Nikiforov, Special Functions of Mathematical Physics (1988)
[73] DOI: 10.2307/2371102 · Zbl 0005.29901
[74] DOI: 10.1090/S0002-9947-1961-0133518-X
[75] Erdélyi, Higher Transcendental Functions, Volumes I–III (1953)
[76] Olver, Asymptotics and Special Functions (1974)
[77] Rainville, Special Functions (1960)
[78] Vilenkin, Special Functions and the Theory of Group Representations (1968) · Zbl 0172.18404
[79] Watson, A Treatise on the Theory of Bessel Functions (1944) · Zbl 0063.08184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.