×

Describing space-time patterns in aquatic ecology using IBMs and scaling and multi-scaling approaches. (English) Zbl 1074.92044

Summary: A new simulation platform, “Mobidyc”, dedicated to non-computer expert end-users, is used to illustrate the advantages of such platforms for simulating population dynamics in space and time. Using dedicated and open-source platforms probably represents a necessary step to guarantee the readability and comparison between models and/or scenarios. The “Mobidyc” platform is specifically dedicated to population dynamics with 2D-discrete spatial representation. We show first how to build easily stage-structured population dynamic models, on the basis of an experimental parameterization of the population dynamics of the copepod Eurytemora affinis, the most dominant species in estuaries of the Northern hemisphere. We subsequently focus on the role of spatial representation and the possible sources of heterogeneities in copepod populations. The sources generating patterns in our examples are strictly endogenous to the population and individual characteristics. They are generated by the random walk of individuals at local scale and the demographic processes (birth, metamorphosis and mortality) at the population scale in the absence of any externally imposed pattern.
The large spatio-temporal data sets of abundances of total populations are analysed statistically. Spatial and temporal patterns are investigated using models and data analysis techniques initially developed in the fields of turbulence and nonlinear physics (e.g., scaling and multi-scaling approaches for data analysis and stochastic simulation). Finally, the role of simulation tools for theoretical studies is discussed.

MSC:

92D40 Ecology
68U20 Simulation (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abraham, E. R., The generation of plankton patchiness by turbulent stirring, Nature, 391, 577-580 (1998)
[2] Andersen, C. M.; Nielsen, T. G., Hatching rate of the egg-carrying estuarine copepod Eurytemora affinis, Mar. Ecol. Prog. Ser., 160, 283-289 (1997)
[3] Benzi, R.; Ciliberto, S.; Tripiccione, R.; Baudet, C.; Ruiz Chavarria, G., Extended self-similarity in the dissipation range of fully developed turbulence, Europhys. Lett., 24, 275-279 (1993)
[4] Berec, L., Techniques of spatially explicit individual-based modelsconstruction, simulation, and mean-field analysis, Ecol. Model., 150, 55-81 (2002)
[5] Coca, D.; Billings, S. A., Identification of coupled map lattice models of complex spatio-temporal patterns, Phys. Lett. A, 287, 65-73 (2001) · Zbl 0971.37022
[6] Devreker, D.; Souissi, S.; Seuront, L., Effects of individual variability on the development and mortality of the first naupliar stages of Eurytemora affinis (Copepoda, Calanoida) under different conditions of salinity and temperature, J. Exp. Mar. Biol. Ecol., 303, 31-46 (2004)
[7] Fahse, L.; Wissel, C.; Grimm, V., Reconciling classical and individual-based approaches in theoretical population ecologya protocol for extracting population parameters from individual-based models, Am. Nat., 152, 838-852 (1998)
[8] Folt, C. L.; Burns, C. W., Biological drivers of plankton patchiness, TREE, 14, 300-305 (1999)
[9] Frisch, U., Turbulence, the Legacy of A.N. Kolmogorov (1995), Cambridge University Press: Cambridge University Press London
[10] Gasparini, S.; Castel, J.; Irigoien, X., Impact of suspended particulate matter on egg production of the estuarine copepod, Eurytemora affinis, J. Mar. Systems, 22, 195-205 (1999)
[11] Ginot, V.; Le Page, C.; Souissi, S., A multi-agents architecture to enhance enduser individual based modelling, Ecol. Model., 157, 23-41 (2002)
[12] Grimm, V., Ten years of individual-based modelling in ecologywhat have we learned and what could we learn in the future?, Ecol. Model., 115, 129-148 (1999)
[13] Grimm, V.; Berger, U., Seeing the forest for the trees, and vice versapattern-oriented ecological modelling, (Seuront, L.; Strutton, P., Handbook of Scaling Methods in Aquatic EcologyMeasurement, Analysis, Simulation (2004), CRC Press: CRC Press Boca Raton), 411-428
[14] V. Grimm, S.F. Railsback, Individual-Based Modelling and Ecology, Princeton University Press, Princeton, NJ, 2005 (in press).; V. Grimm, S.F. Railsback, Individual-Based Modelling and Ecology, Princeton University Press, Princeton, NJ, 2005 (in press). · Zbl 1085.92043
[15] Grimm, V.; Wyszomirski, T.; Aikman, D.; Uchmanski, J., Individual-based modelling and ecological theorysynthesis of a workshop, Ecol. Model., 115, 275-282 (1999)
[16] Hough, A. R.; Naylor, E., Endogenous rhythms of circatidal swimming activity in the estuarine copepod Eurytemora affinis (Poppe), J. Exp. Mar. Biol. Ecol., 161, 27-32 (1992)
[17] Jager, H. I., Individual variation in life history characteristics can influence extinction risk, Ecol. Model., 144, 61-76 (2001)
[18] La Barbera, A.; Spagnolo, B., Spatio-temporal patterns in population dynamics, Physica A, 314, 120-124 (2002) · Zbl 1001.92040
[19] Lomnicki, A., Population ecology from the individual perspective, (Gross, L. J., Individual-Based Models and Approaches in Ecology (1992), Chapman & Hall: Chapman & Hall New York), 3-17
[20] Lorek, H.; Sonnenschein, M., Modelling and simulation software to support individual-based ecological modelling, Ecol. Model., 115, 199-216 (1999)
[21] Lovejoy, S.; Currie, W. J.S.; Teissier, Y.; Claereboudt, M. R.; Bourget, E.; Roff, J. C.; Schertzer, D., Universal multifractals and ocean patchinessphytoplankton, physical fields and coastal heterogeneity, J. Plankton Res., 23, 117-141 (2001)
[22] Mackas, D. L.; Denman, K. L.; Abbott, M. R., Plankton patchinessbiology in the physical vernacular, Bull. Mar. Sci., 37, 652-674 (1985)
[23] Mansury, Y.; Kimura, M.; Lobo, J.; Diesboeck, T. S., Emerging patterns in tumor systemssimulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model, J. Theoret. Biol., 219, 343-370 (2002)
[24] H. Minar, R. Burkhart, C. Langton, M. Askenazi, The swarm simulation system: a toolkit for building multiagent simulations, Working Paper 96-06-042, Santa Fe Institute, 1996.; H. Minar, R. Burkhart, C. Langton, M. Askenazi, The swarm simulation system: a toolkit for building multiagent simulations, Working Paper 96-06-042, Santa Fe Institute, 1996.
[25] Monin, A. S.; Yaglom, A. M., Statistical Fluid MechanicsMechanics of Turbulence (1975), MIT Press: MIT Press Cambridge
[26] Pascual, M.; Ascioti, F. A.; Caswell, H., Intermittency in the planktona multifractal analysis of zooplankton biomass variability, J. Plankton Res., 17, 1209-1232 (1995)
[27] Railsback, S. F., Concepts from complex adaptive systems as a framework for individual-based modelling, Ecol. Model., 139, 47-62 (2001)
[28] Schofield, P.; Chaplain, M.; Hubbard, S., Mathematical modelling of host parasitoid systemseffects of chemically mediated parasitoid foraging strategies on within- and between-generation spatio-temporal dynamics, J. Theoret. Biol., 214, 31-47 (2002)
[29] Seuront, L.; Lagadeuc, Y., Multiscale patchiness of the calanoid copepod Temora longicornis in a turbulent coastal sea, J. Plankton Res., 23, 1137-1145 (2001)
[30] Seuront, L.; Schmitt, F. G.; Lagadeuc, Y.; Schertzer, D.; Lovejoy, S., Universal multifractal analysis as a tool to characterise multi-scale intermittent patterns; example of phytoplankton distribution in turbulent coastal waters, J. Plankton Res., 21, 877-922 (1999)
[31] Sornette, D., Critical Phenomena in Natural Sciences; Chaos, Fractals, Selforganization and DisorderConcepts and Tools (2000), Springer: Springer New York · Zbl 0977.82001
[32] Souissi, S.; Ban, S., The consequences of individual variability in moulting probability and the aggregation of stages for modelling copepod population dynamics, J. Plankton Res., 23, 1279-1296 (2001)
[33] Souissi, S.; Ginot, V.; Seuront, L.; Uye, S-I., Using multi-agent systems to develop individual based models for copepodsconsequences of individual behaviour and spatial heterogeneity on the emerging properties at the population scale, (Seuront, L.; Strutton, P., Handbook of Scaling Methods in Aquatic EcologyMeasurement, Analysis, Simulation (2004), CRC Press: CRC Press Boca Raton), 527-546
[34] Sumpter, D. J.; Broomhead, D. S., Relating individual behaviour to population dynamics, Proc. R. Soc. London B, 268, 925-932 (2001)
[35] Tsuda, A.; Sugisaki, H.; Ishimaru, T.; Saino, T.; Sato, T., White-noise-like distribution of the oceanic copepod Neocalanus cristatus in the subarctic North Pacific, Mar. Ecol. Prog. Ser., 97, 39-46 (1993)
[36] Uchmanski, J.; Grimm, V., Individual-based modelling in ecologywhat makes the difference?, TREE, 11, 437-441 (1996)
[37] Wilcox, D. C., Turbulence Modelling for Computational Fluid Dynamics (1998), DCW Industries
[38] Wilson, W. G., Lotka’s game in predator-prey theorylinking populations to individuals, Theor. Popul. Biol., 50, 368-393 (1996) · Zbl 0865.92016
[39] Young, W. R.; Roberts, A. J.; Stuhne, G., Reproductive pair correlations and the clustering of organisms, Nature, 412, 328-331 (2001)
[40] Zipf, G. K., Selective Studies and the Principle of Relative Frequency in Language (1932), Harvard University Press: Harvard University Press Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.