×

Analysis of velocity-components decoupled projection method for the incompressible Navier-Stokes equations. (English) Zbl 1443.65137

Summary: We study the temporal accuracy and stability of the velocity-components decoupled projection method (VDPM) for fully discrete incompressible Navier-Stokes equations. In particular, we investigate the effect of three formulations of the nonlinear convection term, which include the advective, skew-symmetric, and divergence forms, on the temporal accuracy and stability. Second-order temporal accuracy of the VDPM for both velocity and pressure is verified by establishing global error estimates in terms of a discrete \(l^2\)-norm. Considering the energy evolution, we demonstrate that the VDPM is stable when the time step is less than or equal to a constant. Stability diagrams, which display the distributions of the maximum magnitude of the eigenvalues of the corresponding amplification matrices, are obtained using von Neumann analysis. These diagrams indicate that the advective form is more stable than the other formulations of the nonlinear convection term. Numerical tests are performed in order to support the mathematical findings involving temporal accuracy and stability, and the effects of the formulations of the nonlinear convection term are analyzed. Overall, our results indicate that the VDPM along with an advective discrete convection operator is almost unconditionally stable, second-order accurate in time, and computationally efficient because of the non-iterative solution procedure in solving the decoupled momentum equations.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bell, J. B.; Colella, P.; Glaz, H. M., A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85, 257-283 (1989) · Zbl 0681.76030
[2] Choi, H.; Moin, P., Effects of the computational time step on numerical solutions of turbulent flow, J. Comput. Phys., 113, 1-4 (1994) · Zbl 0807.76051
[3] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comp., 22, 745-762 (1968) · Zbl 0198.50103
[4] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[5] Guermond, J.-L.; Quartapelle, L., A projection FEM for variable density incompressible flows, J. Comput. Phys., 165, 167-188 (2000) · Zbl 0994.76051
[6] Guermond, J.-L.; Shen, J., Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal., 41, 112-134 (2003) · Zbl 1130.76395
[7] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59, 308-323 (1985) · Zbl 0582.76038
[8] Kim, K.; Baek, S. J.; Sung, H. J., An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 38, 125-138 (2002) · Zbl 1059.76046
[9] Perot, J., An analysis of the fractional step method, J. Comput. Phys., 108, 51-58 (1993) · Zbl 0778.76064
[10] Temam, R., Une méthode d’approximation de la solution des équations de Navier-Stokes, Bull. Soc. Math. France, 96, 115-152 (1968) · Zbl 0181.18903
[11] van Kan, J., A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Stat. Comput., 7, 870-891 (1986) · Zbl 0594.76023
[12] Brown, D. L.; Cortez, R.; Minion, M. L., Accurate projection methods for the incompressbile Navier-Stokes equations, J. Comput. Phys., 168, 464-499 (2001) · Zbl 1153.76339
[13] Deriaz, E., Stability conditions for the numerical solution of convection-dominated problems with skew-symmetric discretizations, SIAM J. Numer. Anal., 50, 1058-1085 (2012) · Zbl 1252.65155
[14] Dukowicz, J. K.; Dvinsky, A. S., Approximate factorization as a high order splitting for the implicit incompressible flow equations, J. Comput. Phys., 102, 336-347 (1992) · Zbl 0760.76059
[15] Guermond, J.-L.; Shen, J., On the error estimates for the rotational pressure-correction projection methods, Math. Comp., 73, 1719-1737 (2004) · Zbl 1093.76050
[16] Guy, R. D.; Fogelson, A. L., Stability of approximate projection methods on cell-centered grids, J. Comput. Phys., 203, 517-538 (2005) · Zbl 1143.76558
[17] Pyo, J. H.; Shen, J., Normal mode analysis of second-order projection methods for incompressible flows, Discrete Contin. Dyn. Syst.—Ser. B, 5, 817-840 (2005) · Zbl 1140.76323
[18] Guermond, J.-L.; Salgado, A., A fractional step method based on a pressure Poisson equation for incompressible flows with variable density, C. R. Math. Acad. Sci. Paris, 346, 913-918 (2008) · Zbl 1144.76043
[19] Huang, L. C.; Wu, Y. D., The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations, Comput. Math. Appl., 31, 1-21 (1996) · Zbl 0855.76043
[20] Shen, J., On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes, Math. Comp., 65, 1039-1065 (1996) · Zbl 0855.76049
[21] Welch, J. E.; Harlow, F. H.; Shannon, J. P.; Daly, B. J., The MAC Method, Los Alamos Scientific Lab. Rep. No. LA-3425 (1965)
[22] Huang, W. X.; Sung, H. J., Three-dimensional simulation of a flapping flag in a uniform flow, J. Fluid Mech., 653, 301-336 (2010) · Zbl 1193.74035
[23] Joung, Y.; Choi, S. U.; Choi, J.-I., Direct numerical simulation of turbulent flow in a square duct: analysis of secondary flows, J. Eng. Mech.-ASCE, 133, 213-221 (2007)
[24] Kim, K.; Sung, H. J., Effects of unsteady blowing through a spanwise slot on a turbulent boundary layer, J. Fluid Mech., 557, 423-450 (2006) · Zbl 1147.76580
[25] Lee, J.; Lee, J. H.; Choi, J.-I.; Sung, H. J., Spatial organization of large-and very-large-scale motions in a turbulent channel flow, J. Fluid Mech., 749, 818-840 (2014)
[26] Park, S. G.; Chang, C. B.; Huang, W. X.; Sung, H. J., Simulation of swimming oblate jellyfish with a paddling-based locomotion, J. Fluid Mech., 748, 731-755 (2014)
[27] Morinishi, Y.; Lund, T. S.; Vasilyev, O. V.; Moin, P., Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys., 143, 90-124 (1998) · Zbl 0932.76054
[28] Beam, R. M.; Warming, R. F., An implicit factored scheme for the compressible Navier-Stokes equations, AIAA J., 16, 393-402 (1978) · Zbl 0374.76025
[29] Wise, S. M.; Wand, C.; Lowengrub, J. S., An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47, 2269-2288 (2009) · Zbl 1201.35027
[30] Newren, E. P.; Fogelson, A. L.; Guy, R. D.; Kirby, R. M., Unconditionally stable discretizations of the immersed boundary equations, J. Comput. Phys., 222, 702-719 (2007) · Zbl 1158.74350
[31] Armfield, S.; Street, R., An analysis and comparison of the time accuracy of fractional-step methods for the Navier-Stokes equations on staggered grids, Internat. J. Numer. Methods Fluids, 38, 255-282 (2002) · Zbl 1027.76033
[32] Sanderse, B., Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 233, 100-131 (2013) · Zbl 1286.76034
[33] Hyman, J. M.; Steinberg, S., The convergence of mimetic discretization for rough grids, Comput. Math. Appl., 47, 1565-1610 (2004) · Zbl 1070.65114
[34] Jovanovic, M.; Bamieh, B., Componentwise energy amplification in channel flows, J. Fluid Mech., 534, 145-183 (2005) · Zbl 1074.76016
[35] Moin, P., Fundamentals of Engineering Numerical Analysis, 102-104 (2010), Cambridge University Press: Cambridge University Press New York · Zbl 1228.65003
[36] Dailey, L. D.; Pletcher, R. H., Evaluation of multigrid acceleration for preconditioned time-accurate Navier-Stokes algorithms, Comput. & Fluids, 25, 791-811 (1996) · Zbl 0895.76066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.