×

On the spectral theory and dynamics of asymptotically hyperbolic manifolds. (English) Zbl 1252.37025

This article provides a brief up-to-date survey of the spectral theory and dynamics of asymptotically hyperbolic manifolds of infinite volume. It is well written and contains numerous bibliographical notes.

MSC:

37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
53C22 Geodesics in global differential geometry
PDFBibTeX XMLCite
Full Text: DOI arXiv EuDML

References:

[1] Anderson, Michael T., AdS/CFT correspondence: Einstein metrics and their conformal boundaries, 8, 1-31 (2005) · Zbl 1071.81553 · doi:10.4171/013-1/1
[2] Anderson, Michael T., Perspectives in Riemannian geometry, 40, 1-26 (2006) · Zbl 1110.53031
[3] Anosov, D. V., Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., 90 (1967) · Zbl 0163.43604
[4] Arthur, James, Number theory, trace formulas and discrete groups (Oslo, 1987), 11-27 (1989) · Zbl 0671.10026
[5] Bahuaud, Eric, An intrinsic characterization of asymptotically hyperbolic metrics (2007) · Zbl 1163.53025
[6] Bahuaud, Eric, Intrinsic characterization for Lipschitz asymptotically hyperbolic metrics, Pacific J. Math., 239, 2, 231-249 (2009) · Zbl 1163.53025 · doi:10.2140/pjm.2009.239.231
[7] Barreira, Luis; Pesin, Yakov B., Lyapunov exponents and smooth ergodic theory, 23 (2002) · Zbl 1195.37002
[8] Bérard, Pierre H., On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., 155, 3, 249-276 (1977) · Zbl 0341.35052 · doi:10.1007/BF02028444
[9] Bishop, R. L.; O’Neill, B., Manifolds of negative curvature, Trans. Amer. Math. Soc., 145, 1-49 (1969) · Zbl 0191.52002 · doi:10.1090/S0002-9947-1969-0251664-4
[10] Bolton, J., Conditions under which a geodesic flow is Anosov, Math. Ann., 240, 2, 103-113 (1979) · Zbl 0382.58017 · doi:10.1007/BF01364627
[11] Born, M.; Heisenberg, W.; Jordan, P., Zur Quantenmechanik II, Zeitschrift für Physik, 35, 557-616 (1925) · JFM 52.0963.01 · doi:10.1007/BF01379806
[12] Borthwick, David, Scattering theory for conformally compact metrics with variable curvature at infinity, J. Funct. Anal., 184, 2, 313-376 (2001) · Zbl 1006.58019 · doi:10.1006/jfan.2001.3770
[13] Borthwick, David, Upper and lower bounds on resonances for manifolds hyperbolic near infinity, Comm. Partial Differential Equations, 33, 7-9, 1507-1539 (2008) · Zbl 1168.58012 · doi:10.1080/03605300802031598
[14] Borthwick, David; Judge, Chris; Perry, Peter A., Selberg’s zeta function and the spectral geometry of geometrically finite hyperbolic surfaces, Comment. Math. Helv., 80, 3, 483-515 (2005) · Zbl 1079.58023 · doi:10.4171/CMH/23
[15] Borthwick, David; Perry, Peter, Scattering poles for asymptotically hyperbolic manifolds, Trans. Amer. Math. Soc., 354, 3, 1215-1231 (electronic) (2002) · Zbl 1009.58021 · doi:10.1090/S0002-9947-01-02906-3
[16] Borthwick, David; Perry, Peter, Inverse scattering results for manifolds hyperbolic near infinity (2009) · Zbl 1229.58024
[17] Bowen, Rufus, Periodic orbits for hyperbolic flows, Amer. J. Math., 94, 1-30 (1972) · Zbl 0254.58005 · doi:10.2307/2373590
[18] Bowen, Rufus, Maximizing entropy for a hyperbolic flow, Math. Systems Theory, 7, 4, 300-303 (1974) · Zbl 0303.58014
[19] Canary, Richard D.; Minsky, Yair N.; Taylor, Edward C., Spectral theory, Hausdorff dimension and the topology of hyperbolic 3-manifolds, J. Geom. Anal., 9, 1, 17-40 (1999) · Zbl 0957.57012
[20] do Carmo, Manfredo Perdigão, Riemannian geometry (1992) · Zbl 0752.53001
[21] Chang, Sun-Yung A.; Gursky, Matthew J.; Yang, Paul, Conformal invariants associated to a measure, Proc. Natl. Acad. Sci. USA, 103, 8, 2535-2540 (2006) · Zbl 1160.53356 · doi:10.1073/pnas.0510814103
[22] Chang, Sun-Yung A.; Qing, Jie; Yang, Paul, Some progress in conformal geometry, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007) · Zbl 1133.53031 · doi:10.3842/SIGMA.2007.122
[23] Chen, Su Shing; Manning, Anthony, The convergence of zeta functions for certain geodesic flows depends on their pressure, Math. Z., 176, 3, 379-382 (1981) · Zbl 0437.58016 · doi:10.1007/BF01214614
[24] Dirac, P., The quantum theory of the electron, Proc. R. Soc. London Series A,, 778, 610-624 (1928) · JFM 54.0973.01 · doi:10.1098/rspa.1928.0023
[25] Duistermaat, J. J.; Guillemin, V. W., The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29, 1, 39-79 (1975) · Zbl 0307.35071 · doi:10.1007/BF01405172
[26] Eberlein, Patrick, Geodesic flows on negatively curved manifolds. I, Ann. of Math. (2), 95, 492-510 (1972) · Zbl 0217.47304 · doi:10.2307/1970869
[27] Eberlein, Patrick, Geodesic flows on negatively curved manifolds. II, Trans. Amer. Math. Soc., 178, 57-82 (1973) · Zbl 0264.53027 · doi:10.1090/S0002-9947-1973-0314084-0
[28] Eberlein, Patrick, When is a geodesic flow of Anosov type? I,II, J. Differential Geometry, 8, 437-463; ibid. 8 (1973), 565-577 (1973) · Zbl 0295.58009
[29] Eberlein, Patrick; Hamenstädt, Ursula; Schroeder, Viktor, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), 54, 179-227 (1993) · Zbl 0811.53038
[30] Eberlein, Patrick; O’Neill, B., Visibility manifolds, Pacific J. Math., 46, 45-109 (1973) · Zbl 0264.53026
[31] Einstein, P.; Podolsky, B.; Rosen, N., Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev., 47, 777-780 (1935) · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[32] Fefferman, Charles; Graham, C. Robin, Conformal invariants, Astérisque, Numero Hors Serie, 95-116 (1985) · Zbl 0602.53007
[33] Fefferman, Charles; Graham, C. Robin, \(Q\)-curvature and Poincaré metrics, Math. Res. Lett., 9, 2-3, 139-151 (2002) · Zbl 1016.53031
[34] Franco, Ernesto, Flows with unique equilibrium states, Amer. J. Math., 99, 3, 486-514 (1977) · Zbl 0368.54014 · doi:10.2307/2373927
[35] Freire, A.; Mañé, R., On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math., 69, 3, 375-392 (1982) · Zbl 0476.58019 · doi:10.1007/BF01389360
[36] Gangolli, Ramesh; Warner, Garth, On Selberg’s trace formula, J. Math. Soc. Japan, 27, 328-343 (1975) · Zbl 0325.22014 · doi:10.2969/jmsj/02720328
[37] Gangolli, Ramesh; Warner, Garth, Zeta functions of Selberg’s type for some noncompact quotients of symmetric spaces of rank one, Nagoya Math. J., 78, 1-44 (1980)
[38] Graham, C. Robin, Volume and area renormalizations for conformally compact Einstein metrics, The Proceedings of the 19th Winter School “Geometry and Physics” (Srní, 1999), 63, 31-42 (2000) · Zbl 0984.53020
[39] Graham, C. Robin; Jenne, Ralph; Mason, Lionel J.; Sparling, George A. J., Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2), 46, 3, 557-565 (1992) · Zbl 0726.53010 · doi:10.1112/jlms/s2-46.3.557
[40] Graham, C. Robin; Zworski, Maciej, Scattering matrix in conformal geometry, Invent. Math., 152, 1, 89-118 (2003) · Zbl 1030.58022 · doi:10.1007/s00222-002-0268-1
[41] Guillarmou, Colin, Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J., 129, 1, 1-37 (2005) · Zbl 1099.58011 · doi:10.1215/S0012-7094-04-12911-2
[42] Guillarmou, Colin, Generalized Krein formula, determinants, and Selberg zeta function in even dimension, Amer. J. Math., 131, 5, 1359-1417 (2009) · Zbl 1207.58023 · doi:10.1353/ajm.0.0071
[43] Guillarmou, Colin; Naud, Frédéric, Wave 0-trace and length spectrum on convex co-compact hyperbolic manifolds, Comm. Anal. Geom., 14, 5, 945-967 (2006) · Zbl 1127.58028
[44] Guillemin, Victor, Wave-trace invariants and a theorem of Zelditch, Internat. Math. Res. Notices, 12, 303-308 (1993) · Zbl 0798.58073 · doi:10.1155/S1073792893000340
[45] Guillemin, Victor, Wave-trace invariants, Duke Math. J., 83, 2, 287-352 (1996) · Zbl 0858.58051 · doi:10.1215/S0012-7094-96-08311-8
[46] Guillopé, Laurent, Sur la distribution des longueurs des géodésiques fermées d’une surface compacte à bord totalement géodésique, Duke Math. J., 53, 3, 827-848 (1986) · Zbl 0611.53042 · doi:10.1215/S0012-7094-86-05345-7
[47] Guillopé, Laurent; Zworski, Maciej, Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity, Asymptotic Anal., 11, 1, 1-22 (1995) · Zbl 0859.58028
[48] Guillopé, Laurent; Zworski, Maciej, Upper bounds on the number of resonances for non-compact Riemann surfaces, J. Funct. Anal., 129, 2, 364-389 (1995) · Zbl 0841.58063 · doi:10.1006/jfan.1995.1055
[49] Guillopé, Laurent; Zworski, Maciej, The wave trace for Riemann surfaces, Geom. Funct. Anal., 9, 6, 1156-1168 (1999) · Zbl 0947.58022 · doi:10.1007/s000390050110
[50] Gutzwiller, M. C., Periodic orbits and classical quantization conditions, J. Math. Phys., 12, 3, 343-358 (1971) · doi:10.1063/1.1665596
[51] Hejhal, Dennis A., The Selberg trace formula for congruence subgroups, Bull. Amer. Math. Soc., 81, 752-755 (1975) · Zbl 0304.10018 · doi:10.1090/S0002-9904-1975-13859-6
[52] Hejhal, Dennis A., The Selberg trace formula for \({\rm PSL}(2,\,{\bf R})\). Vol. 1 and 2, 548 and 1001 (19761983) · Zbl 0543.10020
[53] Hörmander, Lars, The analysis of linear partial differential operators. I (2003) · Zbl 1028.35001
[54] Jakobson, Dmitry; Polterovich, Iosif; Toth, John A., A lower bound for the remainder in Weyl’s law on negatively curved surfaces, Int. Math. Res. Not. IMRN, 2 (2008) · Zbl 1161.58010
[55] Joshi, Mark S.; Sá Barreto, Antônio, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math., 184, 1, 41-86 (2000) · Zbl 1142.58309 · doi:10.1007/BF02392781
[56] Joshi, Mark S.; Sá Barreto, Antônio, The wave group on asymptotically hyperbolic manifolds, J. Funct. Anal., 184, 2, 291-312 (2001) · Zbl 0997.58010 · doi:10.1006/jfan.2001.3741
[57] Karnaukh, A., Spectral count on compact negatively curved surfaces (1996)
[58] Katok, Anatole; Hasselblatt, Boris, Introduction to the modern theory of dynamical systems, 54 (1995) · Zbl 0878.58019
[59] Klingenberg, Wilhelm, Riemannian manifolds with geodesic flow of Anosov type, Ann. of Math. (2), 99, 1-13 (1974) · Zbl 0272.53025 · doi:10.2307/1971011
[60] Lalley, S. P., The “prime number theorem” for the periodic orbits of a Bernoulli flow, Amer. Math. Monthly, 95, 5, 385-398 (1988) · Zbl 0645.28013 · doi:10.2307/2322474
[61] Lax, Peter D.; Phillips, Ralph S., Translation representation for automorphic solutions of the wave equation in non-Euclidean spaces. I, Comm. Pure Appl. Math., 37, 3, 303-328 (1984) · Zbl 0544.10024 · doi:10.1002/cpa.3160370304
[62] Lee, John M., The spectrum of an asymptotically hyperbolic Einstein manifold, Comm. Anal. Geom., 3, 1-2, 253-271 (1995) · Zbl 0934.58029
[63] Lee, John M., Fredholm operators and Einstein metrics on conformally compact manifolds, Mem. Amer. Math. Soc., 183, 864 (2006) · Zbl 1112.53002
[64] Manning, Anthony, Topological entropy for geodesic flows, Ann. of Math. (2), 110, 3, 567-573 (1979) · Zbl 0426.58016 · doi:10.2307/1971239
[65] Manning, Anthony, private correspondence (2008)
[66] Mazzeo, Rafe, The Hodge cohomology of a conformally compact metric, J. Differential Geom., 28, 2, 309-339 (1988) · Zbl 0656.53042
[67] Mazzeo, Rafe; Pacard, Frank, Maskit combinations of Poincaré-Einstein metrics, Adv. Math., 204, 2, 379-412 (2006) · Zbl 1097.53029 · doi:10.1016/j.aim.2005.06.001
[68] Mazzeo, Rafe R.; Melrose, Richard B., Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., 75, 2, 260-310 (1987) · Zbl 0636.58034 · doi:10.1016/0022-1236(87)90097-8
[69] Melrose, Richard B., The Atiyah-Patodi-Singer index theorem, 4 (1993) · Zbl 0796.58050
[70] Müller, Werner, Spectral geometry and scattering theory for certain complete surfaces of finite volume, Invent. Math., 109, 2, 265-305 (1992) · Zbl 0772.58063 · doi:10.1007/BF01232028
[71] Naud, Frédéric, Classical and quantum lifetimes on some non-compact Riemann surfaces, J. Phys. A, 38, 49, 10721-10729 (2005) · Zbl 1082.81026 · doi:10.1088/0305-4470/38/49/016
[72] Parry, William; Pollicott, Mark, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. (2), 118, 3, 573-591 (1983) · Zbl 0537.58038 · doi:10.2307/2006982
[73] Patterson, S. J., Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), 111, 281-323 (1987) · Zbl 0611.30036
[74] Patterson, S. J.; Perry, Peter A., Divisor of the Selberg zeta function for Kleinian groups in even dimensions, Duke Math. J., 326, 321-390 (2001) · Zbl 1012.11083
[75] Perry, Peter A., The Laplace operator on a hyperbolic manifold. I. Spectral and scattering theory, J. Funct. Anal., 75, 1, 161-187 (1987) · Zbl 0631.58030 · doi:10.1016/0022-1236(87)90110-8
[76] Perry, Peter A., Asymptotics of the length spectrum for hyperbolic manifolds of infinite volume, Geom. Funct. Anal., 11, 1, 132-141 (2001) · Zbl 0986.11059 · doi:10.1007/PL00001668
[77] Perry, Peter A., A Poisson summation formula and lower bounds for resonances in hyperbolic manifolds, Int. Math. Res. Not., 34, 1837-1851 (2003) · Zbl 1035.58020 · doi:10.1155/S1073792803212241
[78] Phillips, R. S.; Sarnak, P., The Laplacian for domains in hyperbolic space and limit sets of Kleinian groups, Acta Math., 155, 3-4, 173-241 (1985) · Zbl 0611.30037 · doi:10.1007/BF02392542
[79] Phillips, Ralph, Anniversary volume on approximation theory and functional analysis (Oberwolfach, 1983), 65, 521-525 (1984) · Zbl 0559.10017
[80] Phillips, Ralph; Rudnick, Zeév, The circle problem in the hyperbolic plane, J. Funct. Anal., 121, 1, 78-116 (1994) · Zbl 0812.11035 · doi:10.1006/jfan.1994.1045
[81] Rosenberg, Steven, The Laplacian on a Riemannian manifold, 31 (1997) · Zbl 0868.58074 · doi:10.1017/CBO9780511623783
[82] Rowlett, Julie, Dynamics of asymptotically hyperbolic manifolds, Pacific J. Math., 242, 2, 377-397 (2009) · Zbl 1198.37036 · doi:10.2140/pjm.2009.242.377
[83] Rubinstein, Michael; Sarnak, Peter, Chebyshev’s bias, Experiment. Math., 3, 3, 173-197 (1994) · Zbl 0823.11050
[84] Sá Barreto, Antônio, Radiation fields, scattering, and inverse scattering on asymptotically hyperbolic manifolds., Duke Math. J., 129, 3, 407-480 (2005) · Zbl 1154.58310 · doi:10.1215/S0012-7094-05-12931-3
[85] Schrödinger, E., An undulatory theory of the mechanics of atoms and molecules, Phys. Rev., 28, 6, 1049-1070 (1926) · JFM 52.0965.07 · doi:10.1103/PhysRev.28.1049
[86] Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.), 20, 47-87 (1956) · Zbl 0072.08201
[87] Shi, Yuguang; Tian, Gang, Rigidity of asymptotically hyperbolic manifolds, Comm. Math. Phys., 259, 3, 545-559 (2005) · Zbl 1092.53033 · doi:10.1007/s00220-005-1370-1
[88] Smale, S., Differentiable dynamical systems, Bull. Amer. Math. Soc., 73, 747-817 (1967) · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[89] Sullivan, Dennis, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., 50, 171-202 (1979) · Zbl 0439.30034 · doi:10.1007/BF02684773
[90] Walters, Peter, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97, 4, 937-971 (1975) · Zbl 0318.28007 · doi:10.2307/2373682
[91] Yue, Chengbo, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc., 348, 12, 4965-5005 (1996) · Zbl 0864.58047 · doi:10.1090/S0002-9947-96-01614-5
[92] Zelditch, Steven, On the rate of quantum ergodicity. I. Upper bounds, Comm. Math. Phys., 160, 1, 81-92 (1994) · Zbl 0788.58043 · doi:10.1007/BF02099790
[93] Zelditch, Steven, Wave invariants at elliptic closed geodesics, Geom. Funct. Anal., 7, 1, 145-213 (1997) · Zbl 0876.58010 · doi:10.1007/PL00001615
[94] Zelditch, Steven, Wave invariants for non-degenerate closed geodesics, Geom. Funct. Anal., 8, 1, 179-217 (1998) · Zbl 0908.58022 · doi:10.1007/s000390050052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.