Du, Lele; Gao, Fashun; Yang, Minbo On elliptic equations with Stein-Weiss type convolution parts. (English) Zbl 07525070 Math. Z. 301, No. 2, 2185-2225 (2022). MSC: 35J15 35J20 35B06 35B65 PDF BibTeX XML Cite \textit{L. Du} et al., Math. Z. 301, No. 2, 2185--2225 (2022; Zbl 07525070) Full Text: DOI OpenURL
Maia, Liliane; Pellacci, Benedetta; Schiera, Delia Positive bound states to nonlinear Choquard equations in the presence of nonsymmetric potentials. (English) Zbl 07523379 Minimax Theory Appl. 7, No. 2, 321-338 (2022). MSC: 35Q55 35J91 35J20 PDF BibTeX XML Cite \textit{L. Maia} et al., Minimax Theory Appl. 7, No. 2, 321--338 (2022; Zbl 07523379) Full Text: Link OpenURL
Li, Quanqing; Zhang, Jian; Wang, Wenbo; Teng, Kaimin Existence of nontrivial solutions for fractional Choquard equations with critical or supercritical growth. (English) Zbl 07496983 Appl. Anal. 101, No. 3, 849-857 (2022). MSC: 35J61 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{Q. Li} et al., Appl. Anal. 101, No. 3, 849--857 (2022; Zbl 07496983) Full Text: DOI OpenURL
Qin, Dongdong; Lai, Lizhen; Tang, Xianhua; Wu, Qingfang Existence and asymptotic behavior of ground states for Choquard-Pekar equations with Hardy potential and critical reaction. (English) Zbl 07493889 J. Geom. Anal. 32, No. 5, Paper No. 158, 44 p. (2022). Reviewer: Marius Ghergu (Dublin) MSC: 35Q55 35Q40 35J20 35J60 46N50 PDF BibTeX XML Cite \textit{D. Qin} et al., J. Geom. Anal. 32, No. 5, Paper No. 158, 44 p. (2022; Zbl 07493889) Full Text: DOI OpenURL
Maia, Liliane; Pellacci, Benedetta; Schiera, Delia Symmetric positive solutions to nonlinear Choquard equations with potentials. (English) Zbl 07488398 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 61, 34 p. (2022). MSC: 35J91 35J15 35A01 PDF BibTeX XML Cite \textit{L. Maia} et al., Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 61, 34 p. (2022; Zbl 07488398) Full Text: DOI arXiv OpenURL
Zhang, Youpei; Tang, Xianhua Large perturbations of a magnetic system with Stein-Weiss convolution nonlinearity. (English) Zbl 07473175 J. Geom. Anal. 32, No. 3, Paper No. 102, 27 p. (2022). MSC: 35J60 35A01 35A15 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{X. Tang}, J. Geom. Anal. 32, No. 3, Paper No. 102, 27 p. (2022; Zbl 07473175) Full Text: DOI OpenURL
Liang, Sihua; Zhang, Binlin Soliton solutions for quasilinear Schrödinger equations involving convolution and critical Nonlinearities. (English) Zbl 1480.35219 J. Geom. Anal. 32, No. 1, Paper No. 9, 48 p. (2022). MSC: 35J62 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{S. Liang} and \textit{B. Zhang}, J. Geom. Anal. 32, No. 1, Paper No. 9, 48 p. (2022; Zbl 1480.35219) Full Text: DOI OpenURL
Albuquerque, Francisco S. B.; Ferreira, Marcelo C.; Severo, Uberlandio B. Ground state solutions for a nonlocal equation in \(\mathbb{R}^2\) involving vanishing potentials and exponential critical growth. (English) Zbl 1481.35227 Milan J. Math. 89, No. 2, 263-294 (2021). MSC: 35J91 35A01 35A15 PDF BibTeX XML Cite \textit{F. S. B. Albuquerque} et al., Milan J. Math. 89, No. 2, 263--294 (2021; Zbl 1481.35227) Full Text: DOI arXiv OpenURL
Gao, Fashun; Zhou, Jiazheng Semiclassical states for critical Choquard equations with critical frequency. (English) Zbl 1479.35405 Topol. Methods Nonlinear Anal. 57, No. 1, 107-133 (2021). MSC: 35J61 35J75 35A15 PDF BibTeX XML Cite \textit{F. Gao} and \textit{J. Zhou}, Topol. Methods Nonlinear Anal. 57, No. 1, 107--133 (2021; Zbl 1479.35405) Full Text: DOI OpenURL
He, Rui; Liu, Xiangqing Localized nodal solutions for semiclassical Choquard equations. (English) Zbl 07406072 J. Math. Phys. 62, No. 9, 091511, 21 p. (2021). MSC: 81-XX PDF BibTeX XML Cite \textit{R. He} and \textit{X. Liu}, J. Math. Phys. 62, No. 9, 091511, 21 p. (2021; Zbl 07406072) Full Text: DOI OpenURL
Yang, Zhipeng; Zhao, Fukun Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth. (English) Zbl 1466.35304 Adv. Nonlinear Anal. 10, 732-774 (2021). MSC: 35Q40 35J50 35B25 35B33 58E05 35R11 PDF BibTeX XML Cite \textit{Z. Yang} and \textit{F. Zhao}, Adv. Nonlinear Anal. 10, 732--774 (2021; Zbl 1466.35304) Full Text: DOI OpenURL
Benhassine, Abderrazek Standing wave solutions of Maxwell-Dirac systems. (English) Zbl 1465.49010 Calc. Var. Partial Differ. Equ. 60, No. 3, Paper No. 107, 20 p. (2021). MSC: 49J35 35Q40 81V10 PDF BibTeX XML Cite \textit{A. Benhassine}, Calc. Var. Partial Differ. Equ. 60, No. 3, Paper No. 107, 20 p. (2021; Zbl 1465.49010) Full Text: DOI OpenURL
Qin, Dongdong; Lai, Lizhen; Yuan, Shuai; Wu, Qingfang Ground states and multiple solutions for Choquard-Pekar equations with indefinite potential and general nonlinearity. (English) Zbl 1465.35248 J. Math. Anal. Appl. 500, No. 2, Article ID 125143, 29 p. (2021). MSC: 35J91 35A01 35A15 PDF BibTeX XML Cite \textit{D. Qin} et al., J. Math. Anal. Appl. 500, No. 2, Article ID 125143, 29 p. (2021; Zbl 1465.35248) Full Text: DOI OpenURL
Gao, Fashun; Liu, Haidong; Moroz, Vitaly; Yang, Minbo High energy positive solutions for a coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents. (English) Zbl 1465.35176 J. Differ. Equations 287, 329-375 (2021). MSC: 35J47 35J91 35B09 35A02 PDF BibTeX XML Cite \textit{F. Gao} et al., J. Differ. Equations 287, 329--375 (2021; Zbl 1465.35176) Full Text: DOI arXiv OpenURL
Qin, Dongdong; Tang, Xianhua On the planar Choquard equation with indefinite potential and critical exponential growth. (English) Zbl 1465.35249 J. Differ. Equations 285, 40-98 (2021). MSC: 35J91 35A01 PDF BibTeX XML Cite \textit{D. Qin} and \textit{X. Tang}, J. Differ. Equations 285, 40--98 (2021; Zbl 1465.35249) Full Text: DOI OpenURL
He, Xiaoming; Rădulescu, Vicenţiu D. Small linear perturbations of fractional Choquard equations with critical exponent. (English) Zbl 1464.35082 J. Differ. Equations 282, 481-540 (2021). Reviewer: Calogero Vetro (Palermo) MSC: 35J20 35A15 35B33 81Q05 PDF BibTeX XML Cite \textit{X. He} and \textit{V. D. Rădulescu}, J. Differ. Equations 282, 481--540 (2021; Zbl 1464.35082) Full Text: DOI OpenURL
Liu, Xiaonan; Ma, Shiwang; Xia, Jiankang Multiple bound states of higher topological type for semi-classical Choquard equations. (English) Zbl 1459.35178 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 329-355 (2021). MSC: 35J61 35A01 35J20 PDF BibTeX XML Cite \textit{X. Liu} et al., Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 329--355 (2021; Zbl 1459.35178) Full Text: DOI OpenURL
Shen, Liejun Ground state solutions for planar Schrödinger-Poisson system involving subcritical and critical exponential growth with convolution nonlinearity. (English) Zbl 1459.35135 J. Math. Anal. Appl. 495, No. 1, Article ID 124662, 20 p. (2021). MSC: 35J47 35J05 35J10 35A01 PDF BibTeX XML Cite \textit{L. Shen}, J. Math. Anal. Appl. 495, No. 1, Article ID 124662, 20 p. (2021; Zbl 1459.35135) Full Text: DOI OpenURL
Xia, Jiankang; Zhang, Xu Saddle solutions for the critical Choquard equation. (English) Zbl 1459.35216 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 53, 30 p. (2021). MSC: 35J91 35A15 35B33 35B06 35J20 PDF BibTeX XML Cite \textit{J. Xia} and \textit{X. Zhang}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 53, 30 p. (2021; Zbl 1459.35216) Full Text: DOI OpenURL
Qin, Dongdong; Rădulescu, Vicenţiu D.; X. H. Tang, Xianhua Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations. (English) Zbl 1456.35187 J. Differ. Equations 275, 652-683 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q40 35J20 35J60 46N50 PDF BibTeX XML Cite \textit{D. Qin} et al., J. Differ. Equations 275, 652--683 (2021; Zbl 1456.35187) Full Text: DOI OpenURL
Chen, Sitong; Tang, Xianhua; Wei, Jiuyang Nehari-type ground state solutions for a Choquard equation with doubly critical exponents. (English) Zbl 1440.35130 Adv. Nonlinear Anal. 10, 152-171 (2021). MSC: 35J61 35A01 35J20 PDF BibTeX XML Cite \textit{S. Chen} et al., Adv. Nonlinear Anal. 10, 152--171 (2021; Zbl 1440.35130) Full Text: DOI OpenURL
Ding, Yanheng; Gao, Fashun; Yang, Minbo Semiclassical states for Choquard type equations with critical growth: critical frequency case. (English) Zbl 1454.35085 Nonlinearity 33, No. 12, 6695-6728 (2020). MSC: 35J20 35J60 35B33 PDF BibTeX XML Cite \textit{Y. Ding} et al., Nonlinearity 33, No. 12, 6695--6728 (2020; Zbl 1454.35085) Full Text: DOI arXiv OpenURL
Wu, Qingfang; Qin, Dongdong; Chen, Jing Ground states and non-existence results for Choquard type equations with lower critical exponent and indefinite potentials. (English) Zbl 1440.35144 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111863, 19 p. (2020). MSC: 35J61 35B33 35J20 PDF BibTeX XML Cite \textit{Q. Wu} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111863, 19 p. (2020; Zbl 1440.35144) Full Text: DOI OpenURL
Li, Quanqing; Teng, Kaiming; Zhang, Jian Ground state solutions for fractional Choquard equations involving upper critical exponent. (English) Zbl 1440.35113 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111846, 10 p. (2020). MSC: 35J60 35R11 35A15 PDF BibTeX XML Cite \textit{Q. Li} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111846, 10 p. (2020; Zbl 1440.35113) Full Text: DOI OpenURL
Wang, Xiaoping; Liao, Fangfang Ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation. (English) Zbl 1436.35118 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111831, 13 p. (2020). MSC: 35J20 35J62 35Q55 PDF BibTeX XML Cite \textit{X. Wang} and \textit{F. Liao}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111831, 13 p. (2020; Zbl 1436.35118) Full Text: DOI OpenURL
Gao, Fashun; Yang, Minbo; Zhou, Jiazheng Existence of multiple semiclassical solutions for a critical Choquard equation with indefinite potential. (English) Zbl 1437.35295 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111817, 20 p. (2020). MSC: 35J60 35A01 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111817, 20 p. (2020; Zbl 1437.35295) Full Text: DOI OpenURL
Gao, Fashun; Da Silva, Edcarlos D.; Yang, Minbo; Zhou, Jiazheng Existence of solutions for critical Choquard equations via the concentration-compactness method. (English) Zbl 1437.35213 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 921-954 (2020). MSC: 35J20 35J60 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 921--954 (2020; Zbl 1437.35213) Full Text: DOI arXiv OpenURL
Ambrosio, Vincenzo Multiplicity and concentration results for a fractional Schrödinger-Poisson type equation with magnetic field. (English) Zbl 1437.35689 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 655-694 (2020). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 35R11 35A15 35S05 58E05 PDF BibTeX XML Cite \textit{V. Ambrosio}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 655--694 (2020; Zbl 1437.35689) Full Text: DOI arXiv OpenURL
Ma, Pei; Shang, Xudong; Zhang, Jihui Symmetry and nonexistence of positive solutions for fractional Choquard equations. (English) Zbl 1444.35152 Pac. J. Math. 304, No. 1, 143-167 (2020). Reviewer: Gaetano Siciliano (São Paulo) MSC: 35R11 35B06 35B09 35B50 35B53 PDF BibTeX XML Cite \textit{P. Ma} et al., Pac. J. Math. 304, No. 1, 143--167 (2020; Zbl 1444.35152) Full Text: DOI arXiv OpenURL
Guo, Ting; Tang, Xianhua; Zhang, Qi; Gao, Zu Nontrivial solutions for the Choquard equation with indefinite linear part and upper critical exponent. (English) Zbl 1435.35046 Commun. Pure Appl. Anal. 19, No. 3, 1563-1579 (2020). MSC: 35B33 35J20 35J61 PDF BibTeX XML Cite \textit{T. Guo} et al., Commun. Pure Appl. Anal. 19, No. 3, 1563--1579 (2020; Zbl 1435.35046) Full Text: DOI OpenURL
Lü, Dengfeng; Peng, Shuangjie Existence and concentration of solutions for singularly perturbed doubly nonlocal elliptic equations. (English) Zbl 1437.35308 Commun. Contemp. Math. 22, No. 1, Article ID 1850074, 37 p. (2020). MSC: 35J60 35Q55 PDF BibTeX XML Cite \textit{D. Lü} and \textit{S. Peng}, Commun. Contemp. Math. 22, No. 1, Article ID 1850074, 37 p. (2020; Zbl 1437.35308) Full Text: DOI OpenURL
Chen, Sitong; Tang, Xianhua Ground state solutions for general Choquard equations with a variable potential and a local nonlinearity. (English) Zbl 1437.35209 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 14, 23 p. (2020). MSC: 35J20 35J62 35Q55 PDF BibTeX XML Cite \textit{S. Chen} and \textit{X. Tang}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 14, 23 p. (2020; Zbl 1437.35209) Full Text: DOI OpenURL
Chen, Shaoxiong; Li, Yue; Yang, Zhipeng Multiplicity and concentration of nontrivial nonnegative solutions for a fractional Choquard equation with critical exponent. (English) Zbl 1430.35173 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 33, 35 p. (2020). MSC: 35P15 35P30 35R11 PDF BibTeX XML Cite \textit{S. Chen} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 33, 35 p. (2020; Zbl 1430.35173) Full Text: DOI arXiv OpenURL
Gu, Long-Jiang Multiple solutions for a Choquard system with periodic potential. (English) Zbl 1433.35057 J. Math. Anal. Appl. 484, No. 1, Article ID 123704, 23 p. (2020). MSC: 35J47 35J61 PDF BibTeX XML Cite \textit{L.-J. Gu}, J. Math. Anal. Appl. 484, No. 1, Article ID 123704, 23 p. (2020; Zbl 1433.35057) Full Text: DOI OpenURL
Zhang, Hui; Zhang, Fubao Multiplicity and concentration of solutions for Choquard equations with critical growth. (English) Zbl 1426.35020 J. Math. Anal. Appl. 481, No. 1, Article ID 123457, 21 p. (2020). MSC: 35B25 35J61 35R09 35J20 35B33 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{F. Zhang}, J. Math. Anal. Appl. 481, No. 1, Article ID 123457, 21 p. (2020; Zbl 1426.35020) Full Text: DOI OpenURL
Ambrosio, Vincenzo On the multiplicity and concentration of positive solutions for a \(p\)-fractional Choquard equation in \(\mathbb{R}^N\). (English) Zbl 1443.35163 Comput. Math. Appl. 78, No. 8, 2593-2617 (2019). MSC: 35R11 35A35 PDF BibTeX XML Cite \textit{V. Ambrosio}, Comput. Math. Appl. 78, No. 8, 2593--2617 (2019; Zbl 1443.35163) Full Text: DOI arXiv OpenURL
Li, Xinfu; Liu, Xiaonan; Ma, Shiwang Infinitely many bound states for Choquard equations with local nonlinearities. (English) Zbl 1430.35102 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111583, 23 p. (2019). MSC: 35J91 35J20 PDF BibTeX XML Cite \textit{X. Li} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111583, 23 p. (2019; Zbl 1430.35102) Full Text: DOI OpenURL
Zhang, Jing; Wu, Qingfang; Qin, Dongdong Semiclassical solutions for Choquard equations with Berestycki-Lions type conditions. (English) Zbl 1429.35093 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 22-49 (2019). MSC: 35J61 PDF BibTeX XML Cite \textit{J. Zhang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 22--49 (2019; Zbl 1429.35093) Full Text: DOI OpenURL
Gao, Fashun; Yang, Minbo; Santos, Carlos Alberto; Zhou, Jiazheng Infinitely many solutions for a class of critical Choquard equation with zero mass. (English) Zbl 1433.35035 Topol. Methods Nonlinear Anal. 54, No. 1, 219-232 (2019). MSC: 35J20 35J60 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., Topol. Methods Nonlinear Anal. 54, No. 1, 219--232 (2019; Zbl 1433.35035) Full Text: DOI Euclid OpenURL
Alves, Claudianor O.; Tavares, Leandro S. A Hardy-Littlewood-Sobolev-type inequality for variable exponents and applications to quasilinear Choquard equations involving variable exponent. (English) Zbl 1414.35009 Mediterr. J. Math. 16, No. 2, Paper No. 55, 27 p. (2019). MSC: 35A23 35A15 35J62 35J60 35J92 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{L. S. Tavares}, Mediterr. J. Math. 16, No. 2, Paper No. 55, 27 p. (2019; Zbl 1414.35009) Full Text: DOI arXiv OpenURL
Li, Shuoshuo; Shen, Zifei; Yang, Minbo Multiplicity of solutions for a nonlocal nonhomogeneous elliptic equation with critical exponential growth. (English) Zbl 1418.35108 J. Math. Anal. Appl. 475, No. 2, 1685-1713 (2019). MSC: 35J15 35A01 35A15 PDF BibTeX XML Cite \textit{S. Li} et al., J. Math. Anal. Appl. 475, No. 2, 1685--1713 (2019; Zbl 1418.35108) Full Text: DOI OpenURL
Alves, Claudianor O.; Rădulescu, Vicenţiu D.; Tavares, Leandro S. Generalized Choquard equations driven by nonhomogeneous operators. (English) Zbl 1411.35124 Mediterr. J. Math. 16, No. 1, Paper No. 20, 24 p. (2019). MSC: 35J62 35J60 35A15 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Mediterr. J. Math. 16, No. 1, Paper No. 20, 24 p. (2019; Zbl 1411.35124) Full Text: DOI OpenURL
Zou, Guang-an; Wang, Bo Solitary wave solutions for nonlinear fractional Schrödinger equation in Gaussian nonlocal media. (English) Zbl 1410.35222 Appl. Math. Lett. 88, 50-57 (2019). MSC: 35Q55 35R11 35C08 35A15 81V80 65M06 65N35 PDF BibTeX XML Cite \textit{G.-a. Zou} and \textit{B. Wang}, Appl. Math. Lett. 88, 50--57 (2019; Zbl 1410.35222) Full Text: DOI OpenURL
Lei, Yutian On finite energy solutions of fractional order equations of the Choquard type. (English) Zbl 1408.35043 Discrete Contin. Dyn. Syst. 39, No. 3, 1497-1515 (2019). MSC: 35J60 35R11 PDF BibTeX XML Cite \textit{Y. Lei}, Discrete Contin. Dyn. Syst. 39, No. 3, 1497--1515 (2019; Zbl 1408.35043) Full Text: DOI OpenURL
Alves, Claudianor O.; Figueiredo, Giovany M. Existence of positive solution for a planar Schrödinger-Poisson system with exponential growth. (English) Zbl 1410.35194 J. Math. Phys. 60, No. 1, 011503, 13 p. (2019). MSC: 35Q55 35J47 35B09 35C08 35A01 46E35 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{G. M. Figueiredo}, J. Math. Phys. 60, No. 1, 011503, 13 p. (2019; Zbl 1410.35194) Full Text: DOI OpenURL
Ambrosio, Vincenzo Multiplicity and concentration results for a fractional Choquard equation via penalization method. (English) Zbl 1408.35001 Potential Anal. 50, No. 1, 55-82 (2019). Reviewer: Rodica Luca (Iaşi) MSC: 35A15 35B09 35R11 45G05 PDF BibTeX XML Cite \textit{V. Ambrosio}, Potential Anal. 50, No. 1, 55--82 (2019; Zbl 1408.35001) Full Text: DOI arXiv OpenURL
Yang, Jianfu; Yu, Weilin Schrödinger equations with van der Waals type potentials. (English) Zbl 1408.35020 J. Math. Anal. Appl. 471, No. 1-2, 267-298 (2019). MSC: 35J10 PDF BibTeX XML Cite \textit{J. Yang} and \textit{W. Yu}, J. Math. Anal. Appl. 471, No. 1--2, 267--298 (2019; Zbl 1408.35020) Full Text: DOI OpenURL
Bueno, H.; Miyagaki, O. H.; Pereira, G. A. Remarks about a generalized pseudo-relativistic Hartree equation. (English) Zbl 1433.35033 J. Differ. Equations 266, No. 1, 876-909 (2019). Reviewer: Bitao Cheng (Qujing) MSC: 35J20 35Q55 35R11 PDF BibTeX XML Cite \textit{H. Bueno} et al., J. Differ. Equations 266, No. 1, 876--909 (2019; Zbl 1433.35033) Full Text: DOI arXiv OpenURL
Ackermann, Nils Uniform continuity and Brézis-Lieb-type splitting for superposition operators in Sobolev space. (English) Zbl 06992610 Adv. Nonlinear Anal. 7, No. 4, 587-599 (2018). MSC: 47H30 58E40 PDF BibTeX XML Cite \textit{N. Ackermann}, Adv. Nonlinear Anal. 7, No. 4, 587--599 (2018; Zbl 06992610) Full Text: DOI arXiv OpenURL
Liu, Xiaonan; Ma, Shiwang; Zhang, Xu Infinitely many bound state solutions of Choquard equations with potentials. (English) Zbl 1401.35055 Z. Angew. Math. Phys. 69, No. 5, Paper No. 118, 29 p. (2018). MSC: 35J20 35J65 PDF BibTeX XML Cite \textit{X. Liu} et al., Z. Angew. Math. Phys. 69, No. 5, Paper No. 118, 29 p. (2018; Zbl 1401.35055) Full Text: DOI OpenURL
Kuehn, Christian; Throm, Sebastian Validity of amplitude equations for nonlocal nonlinearities. (English) Zbl 1395.35025 J. Math. Phys. 59, No. 7, 071510, 17 p. (2018). MSC: 35B36 35G20 44A35 45H05 35R09 35Q56 PDF BibTeX XML Cite \textit{C. Kuehn} and \textit{S. Throm}, J. Math. Phys. 59, No. 7, 071510, 17 p. (2018; Zbl 1395.35025) Full Text: DOI arXiv OpenURL
Shen, Zifei; Gao, Fashun; Yang, Minbo On critical Choquard equation with potential well. (English) Zbl 1398.35064 Discrete Contin. Dyn. Syst. 38, No. 7, 3567-3593 (2018). MSC: 35J60 35J20 PDF BibTeX XML Cite \textit{Z. Shen} et al., Discrete Contin. Dyn. Syst. 38, No. 7, 3567--3593 (2018; Zbl 1398.35064) Full Text: DOI arXiv OpenURL
Gao, Fashun; Yang, Minbo The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation. (English) Zbl 1397.35087 Sci. China, Math. 61, No. 7, 1219-1242 (2018). MSC: 35J25 35J60 PDF BibTeX XML Cite \textit{F. Gao} and \textit{M. Yang}, Sci. China, Math. 61, No. 7, 1219--1242 (2018; Zbl 1397.35087) Full Text: DOI arXiv OpenURL
Chen, Peng; Liu, Xiaochun Ground states of linearly coupled systems of Choquard type. (English) Zbl 06892642 Appl. Math. Lett. 84, 70-75 (2018). MSC: 35-XX 81-XX PDF BibTeX XML Cite \textit{P. Chen} and \textit{X. Liu}, Appl. Math. Lett. 84, 70--75 (2018; Zbl 06892642) Full Text: DOI OpenURL
Gao, Fashun; Yang, Minbo A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality. (English) Zbl 1391.35126 Commun. Contemp. Math. 20, No. 4, Article ID 1750037, 22 p. (2018). MSC: 35J20 35J60 PDF BibTeX XML Cite \textit{F. Gao} and \textit{M. Yang}, Commun. Contemp. Math. 20, No. 4, Article ID 1750037, 22 p. (2018; Zbl 1391.35126) Full Text: DOI arXiv OpenURL
Zhang, Fubao; Zhang, Hui Existence and concentration of ground states for a Choquard equation with competing potentials. (English) Zbl 1394.35027 J. Math. Anal. Appl. 465, No. 1, 159-174 (2018). MSC: 35B25 35J20 35R09 35J61 PDF BibTeX XML Cite \textit{F. Zhang} and \textit{H. Zhang}, J. Math. Anal. Appl. 465, No. 1, 159--174 (2018; Zbl 1394.35027) Full Text: DOI OpenURL
Ding, Yanheng; Liu, Xiaoying Periodic solutions of superlinear Dirac equations with perturbations from symmetry. (English) Zbl 1380.81104 J. Math. Phys. 59, No. 1, 011504, 17 p. (2018). MSC: 81Q05 81R20 81Q15 35B10 35A15 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{X. Liu}, J. Math. Phys. 59, No. 1, 011504, 17 p. (2018; Zbl 1380.81104) Full Text: DOI OpenURL
Secchi, Simone Existence of solutions for a semirelativistic Hartree equation with unbounded potentials. (English) Zbl 1391.35139 Forum Math. 30, No. 1, 129-140 (2018). Reviewer: Elvira Mascolo (Firenze) MSC: 35J60 35Q55 PDF BibTeX XML Cite \textit{S. Secchi}, Forum Math. 30, No. 1, 129--140 (2018; Zbl 1391.35139) Full Text: DOI arXiv OpenURL
Li, Hong-Yao; Tang, Chun-Lei; Wu, Xing-Ping Multiple positive solutions for a nonlinear Choquard equation with nonhomogeneous. (English) Zbl 1404.35200 Differ. Equ. Appl. 9, No. 4, 553-563 (2017). MSC: 35J91 35B09 PDF BibTeX XML Cite \textit{H.-Y. Li} et al., Differ. Equ. Appl. 9, No. 4, 553--563 (2017; Zbl 1404.35200) Full Text: DOI OpenURL
Mukherjee, T.; Sreenadh, K. Fractional Choquard equation with critical nonlinearities. (English) Zbl 1387.35608 NoDEA, Nonlinear Differ. Equ. Appl. 24, No. 6, Paper No. 63, 34 p. (2017). MSC: 35R11 35R09 35A15 PDF BibTeX XML Cite \textit{T. Mukherjee} and \textit{K. Sreenadh}, NoDEA, Nonlinear Differ. Equ. Appl. 24, No. 6, Paper No. 63, 34 p. (2017; Zbl 1387.35608) Full Text: DOI arXiv OpenURL
Belchior, P.; Bueno, H.; Miyagaki, O. H.; Pereira, G. A. Remarks about a fractional Choquard equation: ground state, regularity and polynomial decay. (English) Zbl 1373.35111 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 164, 38-53 (2017). MSC: 35J20 35Q55 35B38 35R11 PDF BibTeX XML Cite \textit{P. Belchior} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 164, 38--53 (2017; Zbl 1373.35111) Full Text: DOI OpenURL
Wang, Tao Existence of positive ground-state solution for Choquard-type equations. (English) Zbl 1365.35037 Mediterr. J. Math. 14, No. 1, Paper No. 26, 15 p. (2017). MSC: 35J61 PDF BibTeX XML Cite \textit{T. Wang}, Mediterr. J. Math. 14, No. 1, Paper No. 26, 15 p. (2017; Zbl 1365.35037) Full Text: DOI OpenURL
Ding, Yanheng; Wei, Juncheng Multiplicity of semiclassical solutions to nonlinear Schrödinger equations. (English) Zbl 1364.35330 J. Fixed Point Theory Appl. 19, No. 1, 987-1010 (2017). MSC: 35Q55 35A09 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{J. Wei}, J. Fixed Point Theory Appl. 19, No. 1, 987--1010 (2017; Zbl 1364.35330) Full Text: DOI OpenURL
Moroz, Vitaly; Van Schaftingen, Jean A guide to the Choquard equation. (English) Zbl 1360.35252 J. Fixed Point Theory Appl. 19, No. 1, 773-813 (2017). MSC: 35Q55 35R09 35J91 PDF BibTeX XML Cite \textit{V. Moroz} and \textit{J. Van Schaftingen}, J. Fixed Point Theory Appl. 19, No. 1, 773--813 (2017; Zbl 1360.35252) Full Text: DOI arXiv Link OpenURL
Ding, Yanheng; Liu, Xiaoying Periodic solutions of an asymptotically linear Dirac equation. (English) Zbl 1368.35228 Ann. Mat. Pura Appl. (4) 196, No. 2, 717-735 (2017). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 35Q40 35B10 35A15 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{X. Liu}, Ann. Mat. Pura Appl. (4) 196, No. 2, 717--735 (2017; Zbl 1368.35228) Full Text: DOI OpenURL
Wang, Tao; Yi, Taishan Uniqueness of positive solutions of the Choquard type equations. (English) Zbl 1360.35256 Appl. Anal. 96, No. 3, 409-417 (2017). MSC: 35Q55 34A12 35B09 35A02 35Q40 PDF BibTeX XML Cite \textit{T. Wang} and \textit{T. Yi}, Appl. Anal. 96, No. 3, 409--417 (2017; Zbl 1360.35256) Full Text: DOI OpenURL
Lü, Dengfeng Existence and concentration of ground state solutions for singularly perturbed nonlocal elliptic problems. (English) Zbl 1369.35023 Monatsh. Math. 182, No. 2, 335-358 (2017). Reviewer: Jiří Rákosník (Praha) MSC: 35J60 PDF BibTeX XML Cite \textit{D. Lü}, Monatsh. Math. 182, No. 2, 335--358 (2017; Zbl 1369.35023) Full Text: DOI OpenURL
Gao, Fashun; Yang, Minbo On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents. (English) Zbl 1357.35106 J. Math. Anal. Appl. 448, No. 2, 1006-1041 (2017). MSC: 35J20 35B33 PDF BibTeX XML Cite \textit{F. Gao} and \textit{M. Yang}, J. Math. Anal. Appl. 448, No. 2, 1006--1041 (2017; Zbl 1357.35106) Full Text: DOI arXiv OpenURL
Zhang, Wen; Zhang, Jian; Xie, Xiaoliang On ground states for the Schrödinger-Poisson system with periodic potentials. (English) Zbl 1371.35041 Indian J. Pure Appl. Math. 47, No. 3, 449-470 (2016). MSC: 35J05 35J10 PDF BibTeX XML Cite \textit{W. Zhang} et al., Indian J. Pure Appl. Math. 47, No. 3, 449--470 (2016; Zbl 1371.35041) Full Text: DOI OpenURL
Mercuri, Carlo; Moroz, Vitaly; Van Schaftingen, Jean Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency. (English) Zbl 1406.35365 Calc. Var. Partial Differ. Equ. 55, No. 6, Paper No. 146, 58 p. (2016). MSC: 35Q55 35J91 35J47 35J50 31B35 35B65 PDF BibTeX XML Cite \textit{C. Mercuri} et al., Calc. Var. Partial Differ. Equ. 55, No. 6, Paper No. 146, 58 p. (2016; Zbl 1406.35365) Full Text: DOI arXiv OpenURL
Alves, Claudianor O.; Figueiredo, Giovany M.; Yang, Minbo Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity. (English) Zbl 1354.35029 Adv. Nonlinear Anal. 5, No. 4, 331-345 (2016). MSC: 35J20 35J60 35A15 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Adv. Nonlinear Anal. 5, No. 4, 331--345 (2016; Zbl 1354.35029) Full Text: DOI arXiv OpenURL
Lü, Dengfeng Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. (English) Zbl 1351.35185 Commun. Pure Appl. Anal. 15, No. 5, 1781-1795 (2016). MSC: 35Q55 35J60 35A15 81V70 PDF BibTeX XML Cite \textit{D. Lü}, Commun. Pure Appl. Anal. 15, No. 5, 1781--1795 (2016; Zbl 1351.35185) Full Text: DOI OpenURL
Alves, Claudianor O.; Nóbrega, Alânnio B.; Yang, Minbo Multi-bump solutions for Choquard equation with deepening potential well. (English) Zbl 1347.35097 Calc. Var. Partial Differ. Equ. 55, No. 3, Paper No. 48, 28 p. (2016). Reviewer: Huansong Zhou (Wuhan) MSC: 35J20 35J65 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Calc. Var. Partial Differ. Equ. 55, No. 3, Paper No. 48, 28 p. (2016; Zbl 1347.35097) Full Text: DOI arXiv OpenURL
Alves, Claudianor O.; Cassani, Daniele; Tarsi, Cristina; Yang, Minbo Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \(\mathbb R^2\). (English) Zbl 1347.35096 J. Differ. Equations 261, No. 3, 1933-1972 (2016). Reviewer: Petr Tomiczek (Plzeň) MSC: 35J20 35J60 35B33 PDF BibTeX XML Cite \textit{C. O. Alves} et al., J. Differ. Equations 261, No. 3, 1933--1972 (2016; Zbl 1347.35096) Full Text: DOI arXiv OpenURL
Alves, Claudianor O.; Figueiredo, Giovany M.; Yang, Minbo Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field. (English) Zbl 1339.35278 Asymptotic Anal. 96, No. 2, 135-159 (2016). MSC: 35Q55 35A15 58E05 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Asymptotic Anal. 96, No. 2, 135--159 (2016; Zbl 1339.35278) Full Text: DOI OpenURL
Zhang, Jian; Li, Xiaoguang; Wu, Yonghong; Caccetta, Louis Stability of standing waves for the Klein-Gordon-Hartree equation. (English) Zbl 1338.35038 Appl. Anal. 95, No. 5, 1000-1012 (2016). MSC: 35B35 35A15 35L15 35L71 35R09 PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Anal. 95, No. 5, 1000--1012 (2016; Zbl 1338.35038) Full Text: DOI OpenURL
Cingolani, Silvia; Weth, Tobias On the planar Schrödinger-Poisson system. (English) Zbl 1331.35126 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33, No. 1, 169-197 (2016). MSC: 35J50 35Q40 PDF BibTeX XML Cite \textit{S. Cingolani} and \textit{T. Weth}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33, No. 1, 169--197 (2016; Zbl 1331.35126) Full Text: DOI OpenURL
Xie, Tao; Xiao, Lu; Wang, Jun Existence of multiple positive solutions for Choquard equation with perturbation. (English) Zbl 1375.35220 Adv. Math. Phys. 2015, Article ID 760157, 10 p. (2015). MSC: 35J91 35J20 35B09 35Q55 35R09 PDF BibTeX XML Cite \textit{T. Xie} et al., Adv. Math. Phys. 2015, Article ID 760157, 10 p. (2015; Zbl 1375.35220) Full Text: DOI OpenURL
Zhang, Jian; Tang, Xianhua; Zhang, Wen Existence and multiplicity of stationary solutions for a class of Maxwell-Dirac system. (English) Zbl 1326.35305 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 127, 298-311 (2015). MSC: 35Q41 35Q60 81V10 18A30 PDF BibTeX XML Cite \textit{J. Zhang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 127, 298--311 (2015; Zbl 1326.35305) Full Text: DOI OpenURL
Chen, Shaowei; Xiao, Liqin Existence of a nontrivial solution for a strongly indefinite periodic Choquard system. (English) Zbl 1323.35028 Calc. Var. Partial Differ. Equ. 54, No. 1, 599-614 (2015). Reviewer: Patrick Winkert (Berlin) MSC: 35J47 35J50 PDF BibTeX XML Cite \textit{S. Chen} and \textit{L. Xiao}, Calc. Var. Partial Differ. Equ. 54, No. 1, 599--614 (2015; Zbl 1323.35028) Full Text: DOI arXiv OpenURL
Lü, Dengfeng Existence and concentration of solutions for a nonlinear Choquard equation. (English) Zbl 1322.35031 Mediterr. J. Math. 12, No. 3, 839-850 (2015). MSC: 35J60 35Q55 35B38 PDF BibTeX XML Cite \textit{D. Lü}, Mediterr. J. Math. 12, No. 3, 839--850 (2015; Zbl 1322.35031) Full Text: DOI OpenURL
Salazar, Dora Vortex-type solutions to a magnetic nonlinear Choquard equation. (English) Zbl 1320.35330 Z. Angew. Math. Phys. 66, No. 3, 663-675 (2015). MSC: 35Q55 35Q40 35A01 35B06 35J20 PDF BibTeX XML Cite \textit{D. Salazar}, Z. Angew. Math. Phys. 66, No. 3, 663--675 (2015; Zbl 1320.35330) Full Text: DOI Link OpenURL
Liu, Zhisu; Guo, Shangjiang Existence of positive ground state solutions for Kirchhoff type problems. (English) Zbl 1318.35121 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 120, 1-13 (2015). MSC: 35Q74 35Q51 53C35 35B09 35R09 74K05 74K15 74H45 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{S. Guo}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 120, 1--13 (2015; Zbl 1318.35121) Full Text: DOI OpenURL
Sun, Jijiang; Ma, Shiwang Multiple solutions for discrete periodic nonlinear Schrödinger equations. (English) Zbl 1360.81152 J. Math. Phys. 56, No. 2, 022110, 16 p. (2015). MSC: 81Q05 81Q10 35Q55 39A12 PDF BibTeX XML Cite \textit{J. Sun} and \textit{S. Ma}, J. Math. Phys. 56, No. 2, 022110, 16 p. (2015; Zbl 1360.81152) Full Text: DOI OpenURL
Alves, Claudianor O.; Yang, Minbo Existence of semiclassical ground state solutions for a generalized Choquard equation. (English) Zbl 1309.35036 J. Differ. Equations 257, No. 11, 4133-4164 (2014). Reviewer: Junichi Aramaki (Saitama) MSC: 35J92 35A15 35J50 35J60 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{M. Yang}, J. Differ. Equations 257, No. 11, 4133--4164 (2014; Zbl 1309.35036) Full Text: DOI OpenURL
Alves, Claudianor O.; Yang, Minbo Multiplicity and concentration of solutions for a quasilinear Choquard equation. (English) Zbl 1293.35352 J. Math. Phys. 55, No. 6, 061502, 21 p. (2014). MSC: 35R09 35A15 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{M. Yang}, J. Math. Phys. 55, No. 6, 061502, 21 p. (2014; Zbl 1293.35352) Full Text: DOI OpenURL
Li, Xiao Guang; Zhang, Jian; Wu, Yong Hong Instability of standing wave for the Klein-Gordon-Hartree equation. (English) Zbl 1292.35047 Acta Math. Sin., Engl. Ser. 30, No. 5, 861-871 (2014). MSC: 35B40 35L70 35B35 35A15 35B44 35L15 PDF BibTeX XML Cite \textit{X. G. Li} et al., Acta Math. Sin., Engl. Ser. 30, No. 5, 861--871 (2014; Zbl 1292.35047) Full Text: DOI OpenURL
Lü, Dengfeng A note on Kirchhoff-type equations with Hartree-type nonlinearities. (English) Zbl 1286.35108 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 99, 35-48 (2014). MSC: 35J60 35Q55 35J10 PDF BibTeX XML Cite \textit{D. Lü}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 99, 35--48 (2014; Zbl 1286.35108) Full Text: DOI OpenURL
Clapp, Mónica; Salazar, Dora Positive and sign changing solutions to a nonlinear Choquard equation. (English) Zbl 1310.35114 J. Math. Anal. Appl. 407, No. 1, 1-15 (2013). MSC: 35J60 35B09 PDF BibTeX XML Cite \textit{M. Clapp} and \textit{D. Salazar}, J. Math. Anal. Appl. 407, No. 1, 1--15 (2013; Zbl 1310.35114) Full Text: DOI arXiv Link OpenURL
Yang, Minbo; Wei, Yuanhong Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities. (English) Zbl 1294.35149 J. Math. Anal. Appl. 403, No. 2, 680-694 (2013). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35A15 PDF BibTeX XML Cite \textit{M. Yang} and \textit{Y. Wei}, J. Math. Anal. Appl. 403, No. 2, 680--694 (2013; Zbl 1294.35149) Full Text: DOI OpenURL
Sun, Jijiang; Ma, Shiwang Multiple periodic solutions for lattice dynamical systems with superquadratic potentials. (English) Zbl 1318.37026 J. Differ. Equations 255, No. 8, 2534-2563 (2013). MSC: 37K60 34C25 70F45 34A33 PDF BibTeX XML Cite \textit{J. Sun} and \textit{S. Ma}, J. Differ. Equations 255, No. 8, 2534--2563 (2013; Zbl 1318.37026) Full Text: DOI OpenURL
Chen, Guoyuan; Zheng, Youquan Stationary solutions of non-autonomous Maxwell-Dirac systems. (English) Zbl 1281.49040 J. Differ. Equations 255, No. 5, 840-864 (2013). MSC: 49S05 49J20 81V10 35Q60 35Q51 PDF BibTeX XML Cite \textit{G. Chen} and \textit{Y. Zheng}, J. Differ. Equations 255, No. 5, 840--864 (2013; Zbl 1281.49040) Full Text: DOI OpenURL
Li, Gongbao; Wang, Chunhua Multiple solutions for a semilinear elliptic system in \(\mathbb R^N\). (English) Zbl 1284.35169 Math. Methods Appl. Sci. 36, No. 18, 2456-2466 (2013). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35J50 35J61 PDF BibTeX XML Cite \textit{G. Li} and \textit{C. Wang}, Math. Methods Appl. Sci. 36, No. 18, 2456--2466 (2013; Zbl 1284.35169) Full Text: DOI OpenURL
Zhao, Leiga; Zhao, Fukun On ground state solutions for superlinear Hamiltonian elliptic systems. (English) Zbl 1276.35076 Z. Angew. Math. Phys. 64, No. 3, 403-418 (2013). Reviewer: Giovanni Anello (Messina) MSC: 35J47 35J60 58E05 PDF BibTeX XML Cite \textit{L. Zhao} and \textit{F. Zhao}, Z. Angew. Math. Phys. 64, No. 3, 403--418 (2013; Zbl 1276.35076) Full Text: DOI OpenURL
Lei, Yutian On the regularity of positive solutions of a class of Choquard type equations. (English) Zbl 1267.45010 Math. Z. 273, No. 3-4, 883-905 (2013). Reviewer: Claudio Cuevas (Pernambuco) MSC: 45G05 PDF BibTeX XML Cite \textit{Y. Lei}, Math. Z. 273, No. 3--4, 883--905 (2013; Zbl 1267.45010) Full Text: DOI OpenURL
Ding, Yanheng; Liu, Xiaoying Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities. (English) Zbl 1283.35122 Manuscr. Math. 140, No. 1-2, 51-82 (2013). Reviewer: Qin Meng Zhao (Beijing) MSC: 35Q55 35A01 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{X. Liu}, Manuscr. Math. 140, No. 1--2, 51--82 (2013; Zbl 1283.35122) Full Text: DOI OpenURL
Xiao, Lu; Wang, Jun; Fan, Ming; Zhang, Fubao Existence and multiplicity of semiclassical solutions for asymptotically Hamiltonian elliptic systems. (English) Zbl 1270.35222 J. Math. Anal. Appl. 399, No. 1, 340-351 (2013). MSC: 35J47 35J50 35A01 PDF BibTeX XML Cite \textit{L. Xiao} et al., J. Math. Anal. Appl. 399, No. 1, 340--351 (2013; Zbl 1270.35222) Full Text: DOI OpenURL
Yang, Minbo; Zhao, Fukun; Ding, Yanheng On the existence of solutions for Schrödinger-Maxwell systems in \(R^3\). (English) Zbl 1253.35166 Rocky Mt. J. Math. 42, No. 5, 1655-1674 (2012). MSC: 35Q55 35Q61 35J20 35J60 PDF BibTeX XML Cite \textit{M. Yang} et al., Rocky Mt. J. Math. 42, No. 5, 1655--1674 (2012; Zbl 1253.35166) Full Text: DOI Euclid OpenURL
Wang, Jun; Tian, Lixin; Xu, Junxiang; Zhang, Fubao Existence and nonexistence of the ground state solutions for nonlinear Schrödinger equations with nonperiodic nonlinearities. (English) Zbl 1256.35143 Math. Nachr. 285, No. 11-12, 1543-1562 (2012). MSC: 35Q55 35A01 35A15 PDF BibTeX XML Cite \textit{J. Wang} et al., Math. Nachr. 285, No. 11--12, 1543--1562 (2012; Zbl 1256.35143) Full Text: DOI OpenURL
Chen, Guoyuan; Zheng, Youquan Solitary waves for the Klein-Gordon-Dirac model. (English) Zbl 1248.49063 J. Differ. Equations 253, No. 7, 2263-2284 (2012). MSC: 49S05 49J20 81V10 35Q60 35Q51 PDF BibTeX XML Cite \textit{G. Chen} and \textit{Y. Zheng}, J. Differ. Equations 253, No. 7, 2263--2284 (2012; Zbl 1248.49063) Full Text: DOI OpenURL