×

zbMATH — the first resource for mathematics

On asymptotically hereditarily aspherical groups. (English) Zbl 1360.20040
Summary: We undertake a systematic study of asymptotically hereditarily aspherical (AHA) groups, the class of groups introduced by T. Januszkiewicz and the second author [Publ. Math., Inst. Hautes Étud. Sci. 104, 1–85 (2006; Zbl 1143.53039)] as a tool for exhibiting exotic properties of systolic groups. We provide many new examples of AHA groups, also in high dimensions. We relate the AHA property with the topology at infinity of a group, and deduce in this way some new properties of (weakly) systolic groups. We also exhibit an interesting property of boundaries at infinity for a few classes of AHA groups.

MSC:
20F69 Asymptotic properties of groups
20F65 Geometric group theory
20J05 Homological methods in group theory
20F67 Hyperbolic groups and nonpositively curved groups
20F55 Reflection and Coxeter groups (group-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1016/0022-4049(94)90069-8 · Zbl 0823.20034
[2] DOI: 10.1090/S0894-0347-1991-1096169-1
[3] Bridson, Metric spaces of non-positive curvature (1999)
[4] Brown, Cohomology of groups (1982)
[5] DOI: 10.1016/0022-4049(87)90015-6 · Zbl 0613.20033
[6] Buyalo, Dimensions of locally and asymptotically self-similar spaces, Russian, with Russian summary, Algebra i Analiz 19 pp 60– (2007)
[7] DOI: 10.1006/aama.1999.0677 · Zbl 1019.57001
[8] Chepoi, Dismantlability of weakly systolic complexes and applications, Trans. Amer. Math. Soc. 367 pp 1247– (2015) · Zbl 1376.20047
[9] DOI: 10.1007/BF01218369 · Zbl 0443.20030
[10] Davis, The geometry and topology of Coxeter groups (2008) · Zbl 1142.20020
[11] Dranishnikov A. , ’Open problems in asymptotic dimension theory’, Preprint, 2008, https://docs.google.com/file/d/0B-tup63120-GUkpiT3Z0VlNtU2c/edit .
[12] DOI: 10.4064/fm179-3-5 · Zbl 1055.57032
[13] DOI: 10.1007/s00013-003-4654-8 · Zbl 1048.20019
[14] Geoghegan, Topological methods in group theory (2008) · Zbl 1141.57001
[15] DOI: 10.1016/0022-4049(85)90065-9 · Zbl 0577.20024
[16] DOI: 10.1016/0022-4049(86)90149-0 · Zbl 0599.20083
[17] Gruber, Groups with graphical \(C(6)\) and \(C(7)\) small cancellation presentations, Trans. Amer. Math. Soc. 367 pp 2051– (2015) · Zbl 1368.20030
[18] Haglund, Complexes simpliciaux hyperboliques de grande dimension, Prepublication Orsay 71 (2003)
[19] DOI: 10.1007/BF01450344 · Zbl 0458.57001
[20] DOI: 10.1007/s00014-003-0763-z · Zbl 1068.20043
[21] DOI: 10.1007/s10240-006-0038-5 · Zbl 1143.53039
[22] DOI: 10.2140/gt.2007.11.727 · Zbl 1188.20043
[23] Kapovich M. , ’Problems on boundaries of groups and kleinian groups’, Preprint, 2008, https://docs.google.com/file/d/0B-tup63120-GOC15RW8zMDFZZjg/edit . · Zbl 1147.30028
[24] Lefschetz, Algebraic topology (1942)
[25] Lyndon, Combinatorial group theory (1977) · Zbl 0619.20013
[26] DOI: 10.1016/0166-8641(96)00029-6 · Zbl 0865.57002
[27] Ollivier, A January 2005 invitation to random groups (2005)
[28] Ollivier, On a small cancellation theorem of Gromov, Bull. Belg. Math. Soc. Simon Stevin 13 pp 75– (2006) · Zbl 1129.20022
[29] Osajda, Connectedness at infinity of systolic complexes and groups, Groups Geom. Dyn. 1 pp 183– (2007) · Zbl 1128.20029
[30] DOI: 10.2140/agt.2008.8.81 · Zbl 1147.20037
[31] DOI: 10.4171/CMH/288 · Zbl 1282.20049
[32] Osajda D. , ’A combinatorial non-positive curvature I: weak systolicity’, Preprint, 2013, arXiv:1305.4661.
[33] Osajda D. , ’Small cancellation labellings of some infinite graphs and applications’, Preprint, 2014, arXiv:1406.5015.
[34] DOI: 10.2140/gt.2009.13.2807 · Zbl 1271.20056
[35] DOI: 10.1090/S0002-9947-1990-0961627-X
[36] Roe, Lectures on coarse geometry (2003)
[37] DOI: 10.1112/jlms/jdp047 · Zbl 1247.20049
[38] DOI: 10.1016/j.topol.2010.08.019 · Zbl 1255.20042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.