zbMATH — the first resource for mathematics

On \(l\)-adic iterated integrals. III: Galois actions on fundamental groups. (English) Zbl 1134.11331
Summary: We continue to study \(l\)-adic iterated integrals introduced in the first part [Nagoya Math. J. 176, 113–158 (2004; Zbl 1160.11333)]. We calculate explicitly \(l\)-adic logarithm and \(l\)-adic polylogarithms. Next we use these results to study Galois representations on the fundamental group of \(\mathbb P^1_{\overline{\mathbb Q(\mu_n)}}\setminus\{0,\mu_n,\infty\}\).
Fro Part II, see Nagoya Math. J. 177, 117–153 (2005; Zbl 1161.11363).

11G55 Polylogarithms and relations with \(K\)-theory
19D45 Higher symbols, Milnor \(K\)-theory
19D55 \(K\)-theory and homology; cyclic homology and cohomology
19E20 Relations of \(K\)-theory with cohomology theories
19F27 Étale cohomology, higher regulators, zeta and \(L\)-functions (\(K\)-theoretic aspects)
Full Text: DOI Euclid
[1] P. Deligne, Le groupe fondamental de la droite projective moins trois points , Galois Groups over \(\Q\) (Y. Ihara, K. Ribet and J.-P. Serre, eds.), Mathematical Sciences Research Institute Publications, no 16 (1989), 79-297. · Zbl 0742.14022
[2] P. Deligne, talk on the conference in Schloss Ringberg (1998).
[3] A. Goncharov, The dihedral Lie algebra and Galois symmetries of \(\pi_1^(l) (\BP^1 \setminus (\;0, \inf \linebreak \cup \mu_N))\), Duke Math. J., 110 (2001), 397-486. · Zbl 1113.14020
[4] A. Huber and J. Wildeshaus, Classical motivic polylogarithm according to Beilinson and Deligne , Documenta Mathematica, 3 (1998), 27-113. · Zbl 0906.19004
[5] Y. Ihara, Profinite braid groups, Galois representations and complex multiplications , Annals of Math., 123 (1986), 43-106. JSTOR: · Zbl 0595.12003
[6] Y. Ihara, Braids, Galois Groups and Some Arithmetic Functions , Proc. of the Int. Cong. of Math. Kyoto (1990), 99-119. · Zbl 0757.20007
[7] H. Ichimura and K. Sakaguchi, The Non-Vanishing of a Certain Kummer Character \(\chi_m\) (after Soulé ) and Some Related Topics, Advanced Studies in Pure Mathematics 12 (1987), 53-64. · Zbl 0647.12007
[8] H. Nakamura and Z. Wojtkowiak, On explicit formulae for \(l\)-adic polylogarithms , Arithmetic Fundamental Groups and Noncommutative Algebra (M. Fried and Y. Ihara, eds.), Proceedings of Symposia in Pure Mathematics, Vol. 70, American Mathematical Society, 285-294. · Zbl 1191.11022
[9] Ch. Soulé, K-théorie des anneaux d‘entiers de corps de nombres et cohomologie etale , Inventiones math., 55 , 251-295 (1979). · Zbl 0437.12008
[10] Ch. Soulé, On higher \(p\)-adic regulators , Springer Lecture Notes N 854 (1981), 372-401. · Zbl 0488.12008
[11] Ch. Soulé, Eléments Cyclotomiques en K-Théorie , Asterisque, 147-148 (1987), 225-258. · Zbl 0632.12014
[12] L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag (1997). · Zbl 0966.11047
[13] Z. Wojtkowiak, Monodromy of iterated integrals and Galois action on the fundamental group of a projective line minus a finite number of points , Prépublication n 578, Université de Nice, 2000. · Zbl 0641.55014
[14] Z. Wojtkowiak, A note on functional equations of \(l\)-adic polylogarithms , Journal of the Inst. of Math. Jussieu, 3 (2004, no. 3), 461-471. · Zbl 1053.11057
[15] Z. Wojtkowiak, Non-Abelian Unipotent Periods and Monodromy of Iterated Integrals , Journal of the Inst. of Math. Jussieu (2003, 2 , no. 1), 1-24. · Zbl 1044.11057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.