×

A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. (English) Zbl 1173.65343

Summary: Recently a new high-order formulation for 1D conservation laws was developed by H.T. Huynh [A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, AIAA Paper, 2007-4079] using the idea of “flux reconstruction”. The formulation was capable of unifying several popular methods including the discontinuous Galerkin, staggered-grid multi-domain method, or the spectral difference/spectral volume methods into a single family. The extension of the method to quadrilateral and hexahedral elements is straightforward. In an attempt to extend the method to other element types such as triangular, tetrahedral or prismatic elements, the idea of “flux reconstruction” is generalized into a “lifting collocation penalty” approach. With a judicious selection of solution points and flux points, the approach can be made simple and efficient to implement for mixed grids. In addition, the formulation includes the discontinuous Galerkin, spectral volume and spectral difference methods as special cases. Several test problems are presented to demonstrate the capability of the method.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

Software:

AUSM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abgrall, R.; Roe, P. L., High-order fluctuation splitting schemes on triangular mesh, J. Sci. Comput., 19, 3-36 (2003) · Zbl 1068.65133
[2] T.J. Barth, P.O. Frederickson, High-order solution of the Euler equations on unstructured grids using quadratic reconstruction, AIAA Paper No. 90-0013, 1990.; T.J. Barth, P.O. Frederickson, High-order solution of the Euler equations on unstructured grids using quadratic reconstruction, AIAA Paper No. 90-0013, 1990.
[3] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys., 138, 251-285 (1997) · Zbl 0902.76056
[4] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 1, 267-279 (1997) · Zbl 0871.76040
[5] Carpenter, M. H.; Gottlieb, D., Spectral methods on arbitrary grids, J. Comput. Phys., 129, 1, 74-86 (1996) · Zbl 0862.65054
[6] Casper, J.; Atkins, H. L., A finite volume high-order ENO scheme for two-dimensional hyperbolic systems, J. Comput. Phys., 106, 62-76 (1993) · Zbl 0774.65066
[7] Chen, Q.; Babuska, I., Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle, Comput. Methods Appl. Mech. Eng., 128, 405-417 (1995) · Zbl 0862.65006
[8] Chen, R. F.; Wang, Z. J., Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids, AIAA J., 38, 12, 2238-2245 (2000)
[9] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52, 411-435 (1989) · Zbl 0662.65083
[10] Cockburn, B.; Lin, S.-Y.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems, J. Comput. Phys., 84, 90-113 (1989) · Zbl 0677.65093
[11] Cockburn, B.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224 (1998) · Zbl 0920.65059
[12] M. Delanaye, Y. Liu, Quadratic reconstruction finite volume schemes on 3D arbitrary unstructured polyhedral grids, AIAA Paper No. 99-3259-CP, 1999.; M. Delanaye, Y. Liu, Quadratic reconstruction finite volume schemes on 3D arbitrary unstructured polyhedral grids, AIAA Paper No. 99-3259-CP, 1999.
[13] Ekaterinaris, J. A., High-order accurate, low numerical diffusion methods for aerodynamics, Prog. Aerosp. Sci., 41, 192-300 (2005)
[14] Godunov, S. K., A finite-difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47, 271 (1959) · Zbl 0171.46204
[15] Gottlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Method: Theory and Applications (1977), SIAM: SIAM Philadelphia
[16] Gottlieb, S.; Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 73-85 (1998) · Zbl 0897.65058
[17] Harris, R.; Wang, Z. J.; Liu, Y., Efficient quadrature-free high-order spectral volume method on unstructured grids: theory and 2D implementation, J. Comput. Phys., 227, 3, 1620-1642 (2008) · Zbl 1134.65070
[18] Hesthaven, J. S., From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM J. Numer. Anal., 35, 2, 655-676 (1998) · Zbl 0933.41004
[19] Hesthaven, J. S.; Gottlieb, D., Stable spectral methods for conservation laws on triangles with unstructured grids, Comput. Methods Appl. Mech. Eng., 175, 361-381 (1999) · Zbl 0924.76080
[20] Hesthaven, J. S.; Warburton, Tim, Nodal Discontinuous Galerkin Methods (2008), Springer · Zbl 1134.65068
[21] Hughes, T. J.R., Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations, Int. J. Numer. Methods Fluids, 7, 1261-1275 (1987) · Zbl 0638.76080
[22] H.T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, AIAA Paper 2007-4079.; H.T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, AIAA Paper 2007-4079.
[23] Jameson, A., Analysis and design of numerical schemes for gas dynamics. I. Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence, Int. J. Comput. Fluid Dyn., 4, 171-218 (1994)
[24] Karniadakis, G. E.; Sherwin, S. J., Spectral-hp Element Methods (1999), Oxford University Press: Oxford University Press Oxford · Zbl 0924.76078
[25] Kopriva, D. A.; Kolias, J. H., A conservative staggered-grid Chebyshev multidomain method for compressible flows, J. Comput. Phys., 125, 244 (1996) · Zbl 0847.76069
[26] Liou, M.-S., A sequel to AUSM, Part II: AUSM+-up for all speeds, J. Comput. Phys., 214, 137-170 (2006) · Zbl 1137.76344
[27] Y. Liu, M. Vinokur, Z.J. Wang, Discontinuous spectral difference method for conservation laws on unstructured grids, in: Proceedings of the Third International Conference on Computational Fluid Dynamics, Toronto, Canada, July 12-16, 2004.; Y. Liu, M. Vinokur, Z.J. Wang, Discontinuous spectral difference method for conservation laws on unstructured grids, in: Proceedings of the Third International Conference on Computational Fluid Dynamics, Toronto, Canada, July 12-16, 2004.
[28] Liu, Y.; Vinokur, M.; Wang, Z. J., Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems, J. Comput. Phys., 212, 454-472 (2006) · Zbl 1085.65099
[29] Liu, Y.; Vinokur, M.; Wang, Z. J., Discontinuous spectral difference method for conservation laws on unstructured grids, J. Comput. Phys., 216, 780-801 (2006) · Zbl 1097.65089
[30] G. May, A. Jameson, A spectral difference method for the Euler and Navier-Stokes equations, AIAA Paper No. 2006-304, 2006.; G. May, A. Jameson, A spectral difference method for the Euler and Navier-Stokes equations, AIAA Paper No. 2006-304, 2006.
[31] Nastase, C. R.; Mavriplis, D. J., High-order discontinuous Galerkin methods using an hp-multigrid approach, J. Comput. Phys., 213, 330-357 (2006) · Zbl 1089.65100
[32] Nejata, A.; Ollivier-Gooch, C., A high-order accurate unstructured finite volume Newton-Krylov algorithm for inviscid compressible flows, J. Comput. Phys., 227, 2582-2609 (2008) · Zbl 1388.76183
[33] Osher, S., Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal., 21, 217-235 (1984) · Zbl 0592.65069
[34] W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory Report, LA-UR-73-479, 1973.; W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory Report, LA-UR-73-479, 1973.
[35] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[36] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR, 1, 261-279 (1961)
[37] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (Cockburn, B.; Johnson, C.; Shu, C.-W.; Tadmor, E.; Quarteroni, A., Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, vol. 1697 (1998), Springer), 325-432 · Zbl 0927.65111
[38] Spiteri, R. J.; Ruuth, S. J., A new class of optimal high-order strong-stability preserving time discretization methods, SIAM J. Numer. Anal., 40, 469-491 (2002) · Zbl 1020.65064
[39] Y. Sun, Z.J. Wang, Evaluation of discontinuous Galerkin and spectral volume methods for 2d Euler equations on unstructured grids, AIAA-2003-3680.; Y. Sun, Z.J. Wang, Evaluation of discontinuous Galerkin and spectral volume methods for 2d Euler equations on unstructured grids, AIAA-2003-3680.
[40] Van den Abeele, K.; Broeckhoven, T.; Lacor, C., Dispersion and dissipation properties of the 1D spectral volume method and application to a p-multigrid algorithm, J. Comput. Phys., 224, 2, 616-636 (2007) · Zbl 1120.65330
[41] Van den Abeele, K.; Lacor, C., An accuracy and stability study of the 2D spectral volume method, J. Comput. Phys., 226, 1, 1007-1026 (2007) · Zbl 1124.65100
[42] Van den Abeele, K.; Lacor, C.; Wang, Z. J., On the stability and accuracy of the spectral difference method, J. Sci. Comput., 37, 2, 162-188 (2008) · Zbl 1203.65132
[43] Abeele, K. Van den; Lacor, C.; Wang, Z. J., On the connection between the spectral volume and the spectral difference method, J. Comput. Phys., 227, 2, 877-885 (2007) · Zbl 1134.65075
[44] van Leer, B., Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method, J. Comput. Phys., 32, 101-136 (1979) · Zbl 1364.65223
[45] B. Van Leer, S. Nomura, Discontinuous Galerkin for diffusion, AIAA Paper No. 2005-5108, 2005.; B. Van Leer, S. Nomura, Discontinuous Galerkin for diffusion, AIAA Paper No. 2005-5108, 2005.
[46] V. Venkatakrishnan, S.R. Allmaras, D.S. Kamenetskii, F.T. Johnson, Higher order schemes for the compressible Navier-Stokes equations, AIAA-2003-3987.; V. Venkatakrishnan, S.R. Allmaras, D.S. Kamenetskii, F.T. Johnson, Higher order schemes for the compressible Navier-Stokes equations, AIAA-2003-3987.
[47] Wang, Z. J., Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation, J. Comput. Phys., 178, 210-251 (2002) · Zbl 0997.65115
[48] Wang, Z. J., High-order methods for the Euler and Navier-Stokes equations on unstructured grids, J. Prog. Aerosp. Sci., 43, 1-47 (2007)
[49] Wang, Z. J.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids II: extension to two-dimensional scalar equation, J. Comput. Phys., 179, 665-697 (2002) · Zbl 1006.65113
[50] Wang, Z. J.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids III: one-dimensional systems and partition optimization, J. Sci. Comput., 20, 1, 137-157 (2004) · Zbl 1097.65100
[51] Wang, Z. J.; Zhang, L.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional Euler equations, J. Comput. Phys., 194, 2, 716-741 (2004) · Zbl 1039.65072
[52] Warburton, T., An explicit construction of interpolation nodes on the simplex, J. Eng. Math., 56, 247-262 (2006) · Zbl 1110.65014
[53] Yoon, S.; Jameson, A., Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations, AIAA J., 26, 1025-1026 (1988)
[54] Zhang, M.; Shu, C-W., An analysis and a comparison between the discontinuous Galerkin method and the spectral finite volume methods, Comput. Fluids, 34, 4-5, 581-592 (2005) · Zbl 1138.76391
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.