×

Parametric instability analysis of a rotating shaft subjected to a periodic axial force by using discrete singular convolution method. (English) Zbl 1383.74041

Summary: Parametric instability problem of a rotating shaft subjected to a periodically varying axial force has been studied by using a numerical simulation method – discrete singular convolution. External viscous damping and internal material damping (Voigt-Kelvin model) have been considered. Parametric instability regions have been presented to illustrate the influence of spinning speed and damping. Numerical results reveal that for rotating shafts with no damping, parametric instability regions under different spinning speeds are ‘V’ shapes, and do not vary obviously with spinning speed increasing. While, for rotating shafts with damping, parametric instability regions are enlarged significantly as spinning speed increases. It may be considered that spinning speed has a great effect on parametric instability of rotating shafts with damping, but little influence on that of rotating shafts with no damping. Moreover, the increase of damping results in reduction of parametric instability regions, which is helpful to improve dynamic stability of systems. And it is also found that effects of internal material damping and external viscous damping on parametric instability regions are similar. Compared to the results by using theoretical methods of Floquet and Bolotin, it is observed that the numerical results support Floquet’s method, disagree with Bolotin’s method for parametrically excited rotating shafts. In consideration of Bolotin’s method leading to enlargement of instability regions, it is strongly recommended that Bolotin’s should not be applied to parametric instability analysis of rotating systems.

MSC:

74H55 Stability of dynamical problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen LW, Ku DM (1990) Dynamic stability analysis of a rotating shaft by the finite element method. J Sound Vib 143(1):143-151 · doi:10.1016/0022-460X(90)90573-I
[2] Chen LW, Ku DM (1991) Dynamic stability of a rotating shaft embedded in an isotropic Winkler-type foundation. Mech Mach Theory 26(7):687-696 · doi:10.1016/0094-114X(91)90031-X
[3] Chen LW, Ku DM (1992) Dynamic stability of a cantilever shaft-disk system. J Vib Acoust Trans ASME 114(3):326-329 · doi:10.1115/1.2930265
[4] Lee HP (1995) Dynamic stability of spinning pre-twisted beams subject to axial pulsating loads. Comput Methods Appl Mech Eng 127(1-4):115-126 · Zbl 0862.73026 · doi:10.1016/0045-7825(95)00855-3
[5] Lee HP (1995) Effects of axial base excitations on the dynamic stability of spinning per-twisted cantilever beams. J Sound Vib 185(2):265-278 · Zbl 1080.70506 · doi:10.1006/jsvi.1995.0379
[6] Chen LW, Peng WK (1998) Dynamic stability of rotating composite shafts under periodic axial compressive loads. J Sound Vib 212(2):215-230 · doi:10.1006/jsvi.1997.1405
[7] Sheu HC, Chen LW (2000) A lumped mass model for parametric instability analysis of cantilever shaft-disk systems. J Sound Vib 234(2):331-348 · doi:10.1006/jsvi.2000.2865
[8] Lin CY, Chen LW (2005) Dynamic stability of spinning pre-twisted sandwich beams with a constrained damping layer subjected to periodic axial loads. Compos Struct 70(3):275-286 · doi:10.1016/j.compstruct.2004.08.033
[9] Liao CL, Huang BW (1995) Parametric instability of a spinning pretwisted beam under periodic axial force. Int J Mech Sci 37(4):423-439 · Zbl 0826.73028 · doi:10.1016/0020-7403(94)00068-U
[10] Liao CL, Huang BW (1995) Parametric resonance of a spinning pretwisted beam with time-dependent spinning rate. J Sound Vib 180(1):47-65 · doi:10.1006/jsvi.1995.0066
[11] Tan TH, Lee HP, Leng GSB (1997) Parametric instability of spinning pretwisted beams subjected to spin speed perturbation. Comput Methods Appl Mech Eng 148(1-2):139-163 · Zbl 0924.73097 · doi:10.1016/S0045-7825(96)01237-6
[12] Tan TH, Lee HP, Leng GSB (1998) Parametric instability of spinning pretwisted beams subjected to sinusoidal compressive axial loads. Comput Struct 66(6):745-764 · Zbl 0933.74034 · doi:10.1016/S0045-7949(98)00002-9
[13] Yoon SJ, Kim JH (2002) A concentrated mass on the spinning unconstrained beam subjected to a thrust. J Sound Vib 254(4):621-634 · doi:10.1006/jsvi.2001.4125
[14] Young TH, Gau CY (2003) Dynamic stability of spinning pretwisted beams subjected to axial random forces. J Sound Vib 268(1):149-165 · doi:10.1016/S0022-460X(02)01490-6
[15] Young TH, Gau CY (2003) Dynamic stability of pre-twisted beams with non-constant spin rates under axial random forces. Int J Solids Struct 40(18):4675-4698 · Zbl 1054.74606 · doi:10.1016/S0020-7683(03)00197-5
[16] Pavlović R, Rajković P, Pavlović I (2008) Dynamic stability of the viscoelastic rotating shaft subjected to random excitation. Int J Mech Sci 50(2):359-364 · Zbl 1264.74117 · doi:10.1016/j.ijmecsci.2007.05.006
[17] Pavlović R, Rajković P, Mitić S, Pavlović I (2009) Stochastic stability of a rotating shaft. Arch Appl Mech 79(12):1163-1171 · Zbl 1184.74033 · doi:10.1007/s00419-009-0300-7
[18] Pei YC (2009) Stability boundaries of a spinning rotor with parametrically excited gyroscopic system. Eur J Mech A Solids 28(4):891-896 · Zbl 1167.70327 · doi:10.1016/j.euromechsol.2008.12.007
[19] Chen WR (2010) Parametric instability of spinning twisted Timoshenko beams under compressive axial pulsating loads. Int J Mech Sci 52(9):1167-1175 · doi:10.1016/j.ijmecsci.2010.05.001
[20] Younesian D, Esmailzadeh E (2010) Nonlinear vibration of variable speed rotating viscoelastic beams. Nonlinear Dyn 60(1-2):193-205 · Zbl 1189.74049 · doi:10.1007/s11071-009-9589-6
[21] Shahgholi M, Khadem SE (2012) Stability analysis of a nonlinear rotating asymmetrical shaft near the resonances. Nonlinear Dyn 70(2):1311-1325 · doi:10.1007/s11071-012-0535-7
[22] Shahgholi M, Khadem SE, Bab S (2015) Nonlinear vibration analysis of a spinning shaft with multi-disks. Meccanica 50:2293-2307. doi:10.1007/s11012-015-0154-8 · Zbl 1325.74071 · doi:10.1007/s11012-015-0154-8
[23] Li W, Song ZW, Gao XX, Chen ZG (2015) Dynamic instability analysis of a rotating ship shaft under a periodic axial force by discrete singular convolution. Shock Vib. doi:10.1155/2015/482607 · doi:10.1155/2015/482607
[24] Bolotin VV (1965) The dynamic stability of elastic systems. Holden-Day Inc, New York · Zbl 0125.15301
[25] Nayfeh AH, Mook DT (1995) Nonlinear oscillation. Wiley, New York · Zbl 0919.73156 · doi:10.1002/9783527617586
[26] Iwatsubo T, Sugiyama Y, Ishihara K (1972) Stability and non-stationary vibration of columns under periodic loads. J Sound Vib 23(2):245-257 · Zbl 0269.73044 · doi:10.1016/0022-460X(72)90564-0
[27] Song ZW, Li W, Liu GR (2012) Stability and non-stationary vibration analysis of beams subjected to periodic axial forces using discrete singular convolution. Struct Eng Mech 44(4):487-499 · doi:10.12989/sem.2012.44.4.487
[28] Li W, Song ZW, Chai YB (2015) Discrete singular convolution method for dynamic stability analysis of beams under periodic axial forces. J Eng Mech. doi:10.1061/(ASCE)EM.1943-7889.0000931 · doi:10.1061/(ASCE)EM.1943-7889.0000931
[29] Song ZW, Chen ZG, Li W, Chai YB (2015) Dynamic stability analysis of beams with shear deformation and rotary inertia subjected to periodic axial forces by using discrete singular convolution method. J Eng Mech. doi:10.1061/(ASCE)EM.1943-7889.0001023 · doi:10.1061/(ASCE)EM.1943-7889.0001023
[30] Wei GW (1999) Discrete singular convolution for the solution of the Fokker-Planck equations. J Chem Phys 110(18):8930-8942 · doi:10.1063/1.478812
[31] Wei GW (2000) Discrete singular convolution for the sine-Gordon equation. Phys D 137(3-4):247-259 · Zbl 0944.35087 · doi:10.1016/S0167-2789(99)00186-4
[32] Feng BF, Wei GW (2002) A comparison of the spectral and the discrete singular convolution schemes for the KdV-type equations. J Comput Appl Math 145(1):183-188 · Zbl 1001.65110 · doi:10.1016/S0377-0427(01)00543-X
[33] Yang SY, Zhou YC, Wei GW (2002) Comparison of the discrete singular convolution algorithm and the Fourier pseudospectral method for solving partial differential equations. Comput Phys Commun 143(2):113-135 · Zbl 0993.65112 · doi:10.1016/S0010-4655(01)00427-1
[34] Ng CHW, Zhao YB, Wei GW (2004) Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates. Comput Methods Appl Mech Eng 193(23-26):2483-2506 · Zbl 1067.74600 · doi:10.1016/j.cma.2004.01.013
[35] Du H, Lim MK, Lin RM (1994) Application of generalized differential quadrature method to structure problems. Int J Numer Methods Eng 37(11):1881-1896 · Zbl 0804.73076 · doi:10.1002/nme.1620371107
[36] Zienkiewicz OC, Taylor RL (1989) The finite element method, vol 1. McGraw-Hill, New York · Zbl 0991.74002
[37] Wei GW, Zhao YB, Xiang Y (2002) A novel approach for the analysis of high-frequency vibrations. J Sound Vib 257(2):207-246 · doi:10.1006/jsvi.2002.5055
[38] Zhao YB, Wei GW, Xiang Y (2002) Discrete singular convolution for the prediction of high frequency vibration of plates. Int J Solids Struct 39(1):65-88 · Zbl 1090.74604 · doi:10.1016/S0020-7683(01)00183-4
[39] Wei GW (2001) Vibration analysis by discrete singular convolution. J Sound Vib 244(3):535-553 · Zbl 1237.74095 · doi:10.1006/jsvi.2000.3507
[40] Wei GW (2001) Discrete singular convolution for beam analysis. Eng Struct 23(9):1045-1053 · doi:10.1016/S0141-0296(01)00016-5
[41] Zhao S, Wei GW, Xiang Y (2005) DSC analysis of free-edged beams by an iteratively matched boundary method. J Sound Vib 284(1-2):487-493 · Zbl 1237.74198 · doi:10.1016/j.jsv.2004.08.037
[42] Wei GW (2001) A new algorithm for solving some mechanical problems. Comput Methods Appl Mech Eng 190(15-17):2017-2030 · Zbl 1013.74081 · doi:10.1016/S0045-7825(00)00219-X
[43] Wei GW, Zhao YB, Xiang Y (2001) The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution. Int J Mech Sci 43(8):1731-1746 · Zbl 1018.74017 · doi:10.1016/S0020-7403(01)00021-2
[44] Zhao YB, Wei GW (2002) DSC analysis of rectangular plates with non-uniform boundary conditions. J Sound Vib 255(2):203-228 · doi:10.1006/jsvi.2001.4150
[45] Wei GW, Zhao YB, Xiang Y (2002) Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: theory and algorithm. Int J Numer Methods Eng 55(8):913-946 · Zbl 1058.74643 · doi:10.1002/nme.526
[46] Xiang Y, Zhao YB, Wei GW (2002) Discrete singular convolution and its application to the analysis of plates with internal supports. Part 2: applications. Int J Numer Methods Eng 55(8):947-971 · Zbl 1058.74644 · doi:10.1002/nme.527
[47] Zhao YB, Wei GW, Xiang Y (2002) Plate vibration under irregular internal supports. Int J Solids Struct 39(5):1361-1383 · Zbl 1090.74603 · doi:10.1016/S0020-7683(01)00241-4
[48] Yu SN, Xiang Y, Wei GW (2009) Matched interface and boundary (MIB) method for the vibration analysis of plates. Commun Numer Methods Eng 25(9):923-950 · Zbl 1307.74043 · doi:10.1002/cnm.1130
[49] Civalek Ö (2007) Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method. Int J Mech Sci 49(6):752-765 · doi:10.1016/j.ijmecsci.2006.10.002
[50] Civalek Ö (2009) Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method. Appl Math Model 33(10):3825-3835 · Zbl 1205.74104 · doi:10.1016/j.apm.2008.12.019
[51] Civalek Ö (2008) Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method. Finite Elem Anal Des 44:725-731 · doi:10.1016/j.finel.2008.04.001
[52] Civalek Ö (2006) An efficient method for free vibration analysis of rotating truncated conical shells. Int J Press Vessels Pip 83(1):1-12 · doi:10.1016/j.ijpvp.2005.10.005
[53] Civalek Ö (2007) A parametric study of the free vibration analysis of rotating laminated cylindrical shells using the method of discrete singular convolution. Thin Walled Struct 45(7-8):692-698 · doi:10.1016/j.tws.2007.05.004
[54] Civalek Ö (2007) Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach. J Comput Appl Math 205(1):251-271 · Zbl 1115.74058 · doi:10.1016/j.cam.2006.05.001
[55] Civalek Ö (2013) Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory. Compos B Eng 45:1001-1009 · doi:10.1016/j.compositesb.2012.05.018
[56] Wang XW, Xu SM (2010) Free vibration analysis of beams and rectangular plates with free edges by the discrete singular convolution. J Sound Vib 329(10):1780-1792 · doi:10.1016/j.jsv.2009.12.006
[57] Xu SM, Wang XW (2011) Free vibration analyses of Timoshenko beams with free edges by using the discrete singular convolution. Adv Eng Softw 42(10):797-806 · Zbl 1231.74168 · doi:10.1016/j.advengsoft.2011.05.019
[58] Zhu Q, Wang XW (2011) Free vibration analysis of thin isotropic and anisotropic rectangular plates by the discrete singular convolution algorithm. Int J Numer Methods Eng 86(6):782-800 · Zbl 1235.74330 · doi:10.1002/nme.3073
[59] Duan GH, Wang XW (2013) Free vibration analysis of multiple-stepped beams by the discrete singular convolution. Appl Math Comput 219(24):11096-11109 · Zbl 1328.74050
[60] Duan GH, Wang XW (2014) Vibration analysis of stepped rectangular plates by the discrete singular convolution algorithm. Int J Mech Sci 82:100-109 · doi:10.1016/j.ijmecsci.2014.03.004
[61] Lim CW, Li ZR, Wei GW (2005) DSC-Ritz method for high-mode frequency analysis of thick shallow shells. Int J Numer Methods Eng 62(2):205-232 · Zbl 1179.74178 · doi:10.1002/nme.1179
[62] Hou Y, Wei GW, Xiang Y (2005) DSC-Ritz method for the free vibration analysis of Mindlin plates. Int J Numer Methods Eng 62(2):262-288 · Zbl 1179.74175 · doi:10.1002/nme.1186
[63] Xiang Y, Lai SK, Zhou L (2010) DSC-element method for free vibration analysis of rectangular Mindlin plates. Int J Mech Sci 52(4):548-560 · doi:10.1016/j.ijmecsci.2009.12.001
[64] Wan DC, Wei GW (2000) The Study of quasi-wavelets based numerical method applied to Burgers’ equations. Appl Math Mech Engl Ed 21(10):1099-1110 · Zbl 1003.76070 · doi:10.1007/BF02458986
[65] Xiong W, Zhao YB, Gu Y (2003) Parameter optimization in the regularized Shannon’s kernels of higher-order discrete singular convolutions. Commum Numer Methods Eng 19(5):377-386 · Zbl 1018.65123 · doi:10.1002/cnm.596
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.