×

A mathematical programming computational model for disproportionate collapse analysis of steel building frames. (English) Zbl 1258.90110

Summary: Disproportionate collapse analysis aims to assure that frames, a common structural system of buildings, can survive unforeseen local events and a central modeling tool of such abnormal deterioration is the concept of column loss. This paper formulates an appropriate computational model on the basis of mathematical optimization, using the collapse load analysis problem of steel frames with pre-existing damage. A respective collapse load robustness measure is proposed. The model has the ability to consider both full and partial column/node removals. It renders to be a linear programming model, if the US steel design regulations are used. A practical example is presented and several aspects are discussed.

MSC:

90C90 Applications of mathematical programming
90C05 Linear programming

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jirásek M., Bazânt Z.P.: Inelastic Analysis of Structures. Wiley, Chichester (2002)
[2] Cohn M.Z., Maier G., Grierson D.E.: Engineering Plasticity by Mathematical Programming. Pergamon Press, New York (1977)
[3] Smith D.L.: Mathematical Programming Methods in Structural Plasticity. Springer, Vienna (1993)
[4] Tantala M.W., Nordenson G., Deodatis G., Jacob K.: Earthquake loss estimation for the New York City Metropolitan Region. Soil Dyn. Earthq. Eng. 28, 812–835 (2008) · doi:10.1016/j.soildyn.2007.10.012
[5] The First International Symposium on Disproportionate Collapse: ASCE Proceedings of Structures Congress 2009. American Society of Civil Engineers, Austin, Texas (2009)
[6] US Department of Defence (DoD): Unitied Facilities Criteria (UFC)–Design of Buildings to Resist Progressive Collapse. Department of Defence, USA (2009)
[7] US General Services Administration (GSA) Guidelines: Progressive Collapse Analysis and Design Guidelines for New Federal Buildings and Major Modernization Projects. GSA, USA (2003)
[8] Ellingwood B.R., Smilowitz R., Dusenberry D.O., Dutinh D., Lew H.S., Carino N.: Best Practices for Reducing the Potential for Progressive Collapse in Buildings. NIST, USA (2007)
[9] Starossek U.: Progressive Collapse of Structures. Thomas Telford, Hamburg (2009)
[10] Gerasimidis S., Efthymiou E., Baniotopoulos C.: On the application of robustness criteria to steel lattice masts. Pollack Period. 4, 17–28 (2009) · doi:10.1556/Pollack.4.2009.1.3
[11] Ayala A.G.: Evaluation of seismic performance of structures. A new approach. Rev. Int. Metodos Numer. Calculo y Diseno Ingeneria 17, 285–303 (2001) · Zbl 1169.74423
[12] Ballio G., Mazzolani F.: Theory and Design of Steel Structures. Chapman and Hall Ltd, London (1983)
[13] Kwasniewski L.: Nonlinear dynamic simulations of progressive collapse for a multistory building. Eng. Struct. 32, 1223–1235 (2010) · doi:10.1016/j.engstruct.2009.12.048
[14] Kim J., Kim T.: Assesment of progressive collapse-resisting capacity of steel moment frames. J. Constr. Steel Res. 65, 169–179 (2009) · doi:10.1016/j.jcsr.2008.03.020
[15] Foley C.M., Martin K., Schneeman C.: Robustness in Structural Steel Framing Systems, Final Report Submitted to AISC. Marquette University, Chicago (2007)
[16] Kaveh A.: Structural Mechanics: Graph and Matrix Methods. Research Studies Press, New York (1995) · Zbl 0974.74002
[17] Arulsevan A., Commander C.W., Elefteriadou L., Pardalos P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36, 2193–2200 (2009) · Zbl 1158.90411 · doi:10.1016/j.cor.2008.08.016
[18] Steel Construction Manual: American Institute of Steel Construction. AISC, USA (2005)
[19] Lemaitre J., Desmorat R.: Engineering Damage Mechanics. Springer, New York (2005)
[20] Frangopol D.M., Curley K.P.: Effects of damage and redundancy on structural reliability. ASCE J. Struct. Eng. 133, 1533–1549 (1987) · doi:10.1061/(ASCE)0733-9445(1987)113:7(1533)
[21] Cipollina A., López-Inojosa A., Flórez-López J.: A simplified damage mechanics approach to nonlinear analysis of frames. Comput. Struct. 54, 1113–1126 (1995) · Zbl 0871.73055 · doi:10.1016/0045-7949(94)00394-I
[22] Hachemi A., Weichert D.: Numerical shakedown analysis of damaged structures. Comput. Methods Appl. Mech. Eng. 160, 57–70 (1998) · Zbl 0939.74058 · doi:10.1016/S0045-7825(97)00283-1
[23] Bisbos C.D., Ampatzis A.T.: Shakedown analysis of spatial frames with parameterized load domain. Eng. Struct. 30, 3119–3128 (2008) · doi:10.1016/j.engstruct.2008.04.022
[24] Skordeli M.-A.A., Bisbos C.D.: Limit and shakedown analysis of 3D steel frames via approximate ellipsoidal yield surfaces. Eng. Struct. 32, 1556–1567 (2010) · doi:10.1016/j.engstruct.2010.02.004
[25] Bisbos C.D., Pardalos P.M.: Second order cone and semidefinite representations of material failure criteria. J. Optim. Theory Appl. 134, 275–301 (2007) · Zbl 1145.90048 · doi:10.1007/s10957-007-9243-8
[26] Bathe K.J.: Finite Element Procedures. Prentice-Hall, New Jersey (1996) · Zbl 0994.74001
[27] Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Program. 95, 249–477 (2003). http://www.mosek.com · Zbl 1030.90137
[28] MATLAB version 6.5, The MathWorks Inc., Natick, MA (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.