×

The variational approach to fracture. (English) Zbl 1176.74018

The paper summarizes the work of the authors and related groups of the last decade and reports new results on “a very classical introduction to brittle fracture within a rational mechanical framework”. The paper is based on Griffith’s hypothesis that “crack propagation results from the competition between bulk energy away from the crack and surface energy on the crack”. The so-called Griffith’s surface energy is generalized to a “Griffith-like” surface energy, and the problem is reformulated in a variational light. The paper is a “must” for every scientist which is interested to apply engineering concepts on the basis of rigorous mathematical formulations. The potential readers, however, should be familiar with the basics of continuum mechanics in the sense of Truesdell and should be equipped with a thorough education in calculus. Some of the necessary mathematical prerequisites are provided by the authors in an appendix.

MSC:

74A45 Theories of fracture and damage
74R10 Brittle fracture
74G65 Energy minimization in equilibrium problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdelmoula, R.; Marigo, J.-J., The effective behavior of a fiber bridged crack, J. Mech. Phys. Solids, 48, 11, 2419-2444 (2000) · Zbl 0992.74059 · doi:10.1016/S0022-5096(00)00003-X
[2] Acerbi, E.; Fusco, N., Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal., 86, 2, 125-145 (1984) · Zbl 0565.49010 · doi:10.1007/BF00275731
[3] Adams, A.; Fournier, J., Sobolev Spaces, Pure and Applied Mathematics (2003), Oxford: Elsevier, Oxford · Zbl 1098.46001
[4] Alberti, G.; Buttazzo, G., Variational models for phase transitions, an approach via Γ-Convergence, Calculus of Variations and Partial Differential Equations, 95-114 (2000), Berlin: Springer, Berlin · Zbl 0957.35017
[5] Ambrosio, L., Existence theory for a new class of variational problems, Arch. Ration. Mech. Anal., 111, 291-322 (1990) · Zbl 0711.49064 · doi:10.1007/BF00376024
[6] Ambrosio, L., On the lower semicontinuity of quasiconvex integrals in \({\rm SBV}(\Omega,{\bf R}^k)\), Nonlinear Anal.-Theor., 23, 3, 405-425 (1994) · Zbl 0817.49017 · doi:10.1016/0362-546X(94)90180-5
[7] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems (2000), Oxford: Oxford University Press, Oxford · Zbl 0957.49001
[8] Ambrosio, L.; Tortorelli, V., Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence, Commun. Pure Appl. Math., 43, 8, 999-1036 (1990) · Zbl 0722.49020 · doi:10.1002/cpa.3160430805
[9] Ambrosio, L.; Tortorelli, V., On the approximation of free discontinuity problems, Boll. Un. Mat. Ital. B (7), 6, 1, 105-123 (1992) · Zbl 0776.49029
[10] Ball, J. M.; Murat, F., W^1,p-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., 58, 3, 225-253 (1984) · Zbl 0549.46019 · doi:10.1016/0022-1236(84)90041-7
[11] Barenblatt, G. I., The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., 7, 55-129 (1962) · doi:10.1016/S0065-2156(08)70121-2
[12] Bellettini, G.; Coscia, A., Discrete approximation of a free discontinuity problem, Numer. Funct. Anal. Optim., 15, 3-4, 201-224 (1994) · Zbl 0806.49002 · doi:10.1080/01630569408816562
[13] Bilteryst, F.; Marigo, J.-J., An energy based analysis of the pull-out problem, Eur. J. Mech. A- Solids, 22, 55-69 (2003) · Zbl 1107.74318 · doi:10.1016/S0997-7538(02)01240-8
[14] Bonnet, A., David, G.: Cracktip is a global Mumford-Shah minimizer. Astérisque (274), vi+259 (2001) · Zbl 1014.49009
[15] Bouchitté, G.; Braides, A.; Buttazzo, G., Relaxation results for some free discontinuity problems, J. Reine Angew. Math., 458, 1-18 (1995) · Zbl 0817.49015
[16] Bouchitté, G.; Fonseca, I.; Leoni, G.; Mascarenhas, L., A global method for relaxation in W^1,p and in SBV^p, Arch. Ration. Mech. Anal., 165, 3, 187-242 (2002) · Zbl 1028.49009 · doi:10.1007/s00205-002-0220-y
[17] Bourdin, B.: Une méthode variationnelle en mécanique de la rupture. Théorie et applications numériques. Thèse de doctorat, Université Paris-Nord (1998)
[18] Bourdin, B., Image segmentation with a finite element method, ESAIM Math. Model. Numer. Anal., 33, 2, 229-244 (1999) · Zbl 0947.65075 · doi:10.1051/m2an:1999114
[19] Bourdin, B., Numerical implementation of a variational formulation of quasi-static brittle fracture, Interfaces Free Bound., 9, 411-430 (2007) · Zbl 1130.74040 · doi:10.4171/IFB/171
[20] Bourdin, B.: The variational formulation of brittle fracture: numerical implementation and extensions. In: Combescure, A., Belytschko, T., de Borst, R. (eds.) IUTAM Symposium on Discretization Methods for Evolving Discontinuities, pp. 381-394. Springer (2007b) · Zbl 1209.74036
[21] Bourdin, B.; Chambolle, A., Implementation of an adaptive finite-element approximation of the Mumford-Shah functional, Numer. Math., 85, 4, 609-646 (2000) · Zbl 0961.65062 · doi:10.1007/PL00005394
[22] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797-826 (2000) · Zbl 0995.74057 · doi:10.1016/S0022-5096(99)00028-9
[23] Braides, A., Γ-convergence for beginners, Oxford Lecture Series in Mathematics and Its Applications, vol. 22 (2002), New York: Oxford University Press, New York · Zbl 1198.49001
[24] Braides, A.; Dal Maso, G.; Garroni, A., Variational formulation of softening phenomena in fracture mechanics: the one dimensional case, Arch. Ration. Mech. Anal., 146, 23-58 (1999) · Zbl 0945.74006 · doi:10.1007/s002050050135
[25] Bucur, D.; Varchon, N., Boundary variation for a Neumann problem, Ann. Scuola Norm.-Sci., 29, 4, 807-821 (2000) · Zbl 1072.35063
[26] Bui, H. D., Mécanique de la Rupture Fragile (1978), Paris: Masson, Paris
[27] Chaboche, J.-L.; Feyel, F.; Monerie, Y., Interface debonding models: a viscous regularization with a limited rate dependency, Int. J. Solids Struct., 38, 18, 3127-3160 (2001) · Zbl 1017.74063 · doi:10.1016/S0020-7683(00)00053-6
[28] Chambolle, A., A density result in two-dimensional linearized elasticity, and applications, Arch. Ration. Mech. Anal., 167, 3, 211-233 (2003) · Zbl 1030.74007 · doi:10.1007/s00205-002-0240-7
[29] Chambolle, A., An approximation result for special functions with bounded variations, J. Math. Pure Appl., 83, 929-954 (2004) · Zbl 1084.49038
[30] Chambolle, A., Addendum to An approximation result for special functions with bounded deformation [J. Math. Pures Appl. (9) 83 (7) (2004) 929-954]: the N-dimensional case, J. Math. Pure Appl., 84, 137-145 (2005) · Zbl 1084.49038
[31] Chambolle, A.; Doveri, F., Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets, Commun. Part. Diff. Equ., 22, 5-6, 811-840 (1997) · Zbl 0901.35019 · doi:10.1080/03605309708821285
[32] Chambolle, A., Giacomini, A., Ponsiglione, M.: Crack initiation in brittle materials. Arch. Rational Mech. Anal. (2007). doi:doi:10.1007/s00205-007-0080-6 · Zbl 1138.74042
[33] Charlotte, M.; Francfort, G. A.; Marigo, J.-J.; Truskinovky, L.; Benallal, A., Revisiting brittle fracture as an energy minimization problem: comparison of Griffith and Barenblatt surface energy models, Continuous Damage and Fracture, 7-12 (2000), Paris: Elsevier, Paris
[34] Charlotte, M.; Laverne, J.; Marigo, J.-J., Initiation of cracks with cohesive force models: a variational approach, Eur. J. Mech. A-Solids, 25, 4, 649-669 (2006) · Zbl 1187.74159 · doi:10.1016/j.euromechsol.2006.05.002
[35] Ciarlet, P. G., Élasticité tridimensionnelle, vol. 1 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics] (1986), Paris: Masson, Paris · Zbl 0572.73027
[36] Ciarlet, P. G.; Nečas, J., Injectivity and self-contact in nonlinear elasticity, Arch. Ration. Mech. Anal., 97, 3, 171-188 (1987) · Zbl 0628.73043 · doi:10.1007/BF00250807
[37] Dacorogna, B., Direct Methods in the Calculus of Variations (1989), Berlin Heidelberg New York: Springer, Berlin Heidelberg New York · Zbl 0703.49001
[38] Dal Maso, G., An Introduction to Γ-convergence (1993), Boston: Birkhäuser, Boston · Zbl 0816.49001
[39] Dal Maso, G., De Simone, A., Mora, M.G., Morini, M.: A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Technical report, SISSA (2006) · Zbl 1219.35305
[40] Dal Maso, G.; Francfort, G. A.; Toader, R., Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal., 176, 2, 165-225 (2005) · Zbl 1064.74150 · doi:10.1007/s00205-004-0351-4
[41] Dal Maso, G.; Toader, R., A model for the quasi-static growth of brittle fractures: existence and approximation results, Arch. Ration. Mech. Anal., 162, 101-135 (2002) · Zbl 1042.74002 · doi:10.1007/s002050100187
[42] Dal Maso, G.; Zanini, C., Quasistatic crack growth for a cohesive zone model with prescribed crack path, Proc. Roy. Soc. Edin. A, 137, 2, 253-279 (2007) · Zbl 1116.74004 · doi:10.1017/S030821050500079X
[43] De Giorgi, E.; Carriero, M.; Leaci, A., Existence theorem for a minimum problem with free discontinuity set, Arch. Ration. Mech. Anal., 108, 195-218 (1989) · Zbl 0682.49002 · doi:10.1007/BF01052971
[44] Del Piero, G.; Argoul, P.; Frémond, M., One dimensional ductile-brittle transition, yielding, and structured deformations, Proceedings of the IUTAM Symposium Variations de domaines et frontières libres en mécanique, 197-202 (1997), Boston: Kluwer, Boston
[45] Destuynder, P.; Djaoua, M., Sur une interprétation mathématique de l’intégrale de Rice en théorie de la rupture fragile, Math. Meth. Appl. Sc., 3, 70-87 (1981) · Zbl 0493.73087 · doi:10.1002/mma.1670030106
[46] Dugdale, D. S., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100-108 (1960) · doi:10.1016/0022-5096(60)90013-2
[47] Evans, L.; Gariepy, R., Measure Theory and Fine Properties of Functions (1992), Boca Raton, FL: CRC, Boca Raton, FL · Zbl 0804.28001
[48] Federer, H., Geometric Measure Theory (1969), New York: Springer, New York · Zbl 0176.00801
[49] Ferriero, A.: Quasi-static evolution for fatigue debonding. ESAIM Control Optim. Calc. Var. (2007) (to appear) · Zbl 1133.74041
[50] Fonseca, I.; Fusco, N., Regularity results for anisotropic image segmentation models, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, 3, 463-499 (1997) · Zbl 0899.49018
[51] Francfort, G. A.; Garroni, A., A variational view of partial brittle damage evolution, Arch. Ration. Mech. Anal., 182, 1, 125-152 (2006) · Zbl 1098.74006 · doi:10.1007/s00205-006-0426-5
[52] Francfort, G. A.; Larsen, C., Existence and convergence for quasi-static evolution in brittle fracture, Commun. Pure Appl. Math., 56, 10, 1465-1500 (2003) · Zbl 1068.74056 · doi:10.1002/cpa.3039
[53] Francfort, G.A., Le, N., Serfaty, S.: Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case (to appear) · Zbl 1168.49041
[54] Francfort, G. A.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9
[55] Francfort, G. A.; Mielke, A., Existence results for a class of rate-independent material models with nonconvex elastic energies, Reine Angew. J. Math., 595, 55-91 (2006) · Zbl 1101.74015
[56] Garrett, K. W.; Bailey, J. E., Multiple transverse fracture in 90° cross-ply laminates of a glass fiber-reinforced polyester, J. Mater. Sci., 12, 157-168 (1977) · doi:10.1007/BF00738481
[57] Giacomini, A., Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures, Calc. Var. Partial Dif., 22, 2, 129-172 (2005) · Zbl 1068.35189
[58] Giacomini, A., Size effects on quasi-static growth of cracks, SIAM J. Math. Anal., 36, 6, 1887-1928 (2005) · Zbl 1084.35125 · doi:10.1137/S0036141004439362
[59] Giacomini, A.; Ponsiglione, M., A discontinuous finite element approximation of quasi-static growth of brittle fractures, Numer. Funct. Anal. Optim., 24, 7-8, 813-850 (2003) · Zbl 1046.74048 · doi:10.1081/NFA-120026378
[60] Giacomini, A.; Ponsiglione, M., Discontinuous finite element approximation of quasistatic crack growth in nonlinear elasticity, Math. Mod. Meth. Appl. S., 16, 1, 77-118 (2006) · Zbl 1092.35111 · doi:10.1142/S0218202506001066
[61] Griffith, A., The phenomena of rupture and flow in solids, Philos. T. Roy. Soc. A, CCXXI-A, 163-198 (1920) · Zbl 1454.74137
[62] Gurtin, M., Configurational forces as basic concepts of continuum physics, Applied Mathematical Sciences, vol. 137 (2000), New York: Springer, New York · Zbl 0951.74003
[63] Hahn, H., Über Annäherung an Lebesgue’sche Integrale durch Riemann’sche Summen, Sitzungsber. Math. Phys. Kl. K. Akad. Wiss. Wien, 123, 713-743 (1914) · JFM 45.0444.01
[64] Halphen, B.; Nguyen, Q. S., Sur les matériaux standards généralisés, J. Mécanique, 14, 1, 39-63 (1975) · Zbl 0308.73017
[65] Hashin, Z., Finite thermoelastic fracture criterion with application to laminate cracking analysis, J. Mech. Phys. Solids, 44, 7, 1129-1145 (1996) · doi:10.1016/0022-5096(95)00080-1
[66] Hull, D., An Introduction to Composite Materials. Cambridge Solid State Science Series (1981), Cambridge: Cambridge University Press, Cambridge
[67] Irwin, G., Fracture, Handbuch der Physik, herausgegeben von S. Flügge. Bd. 6. Elastizität und Plastizität, 551-590 (1958), Berlin: Springer, Berlin · Zbl 0103.16403
[68] Jaubert, A.: Approche variationnelle de la fatigue. Thèse de doctorat, Université Pierre et Marie Curie, Paris (2006)
[69] Jaubert, A.; Marigo, J.-J., Justification of Paris-type fatigue laws from cohesive forces model via a variational approach, Contin. Mech. Thermodyn., 18, 1-2, 23-45 (2006) · Zbl 1101.74012 · doi:10.1007/s00161-006-0023-8
[70] Kohn, R.; Sternberg, P., Local minimizers and singular perturbations, Proc. Roy. Soc. Edin. A, 111, A, 69-84 (1989) · Zbl 0676.49011
[71] Landau, L.D., Lifschitz, E.M.: Lehrbuch der theoretischen Physik (Landau-Lifschitz). Band VII. Berlin: Akademie-Verlag, seventh edition. Elastizitätstheorie. [Elasticity theory], Translated from the Russian by Benjamin Kozik and Wolfgang Göhler, Translation edited by Hans-Georg Schöpf, With a foreword by Schöpf, and P. Ziesche (1991)
[72] Lawn, B., Fracture of Brittle Solids (1993), Cambridge: Cambridge Solid State Science Series. Cambridge University Press, Cambridge
[73] Leblond, J.-B., Mécanique de la rupture fragile et ductile, Collection Études en mécanique des matériaux et des structures (2000), Paris: Editions Lavoisier, Paris
[74] Leguillon, D., Calcul du taux de restitution de l’énergie au voisinage d’une singularité’, C. R. Acad. Sci. II b, 309, 945-950 (1990) · Zbl 0677.73069
[75] Lemaître, J.; Chaboche, J.-L., Mécanique des Matériaux Solides (1985), Paris: Dunod, Paris
[76] Leonetti, F.; Siepe, F., Maximum principle for vector valued minimizers, J. Convex Anal., 12, 2, 267-278 (2005) · Zbl 1098.49033
[77] Lorentz, E.; Andrieux, S., A variational formulation for nonlocal damage models, Int. J. Plast., 15, 119-138 (1999) · Zbl 1024.74005 · doi:10.1016/S0749-6419(98)00057-6
[78] Marigo, J.-J.; Truskinovsky, L., Initiation and propagation of fracture in the models of Griffith and Barenblatt, Continuum Mech. Therm., 16, 4, 391-409 (2004) · Zbl 1066.74007 · doi:10.1007/s00161-003-0164-y
[79] Mielke, A., Evolution of rate-independent systems, Evolutionary equations. Handb. Differ. Equ., vol. II, 461-559 (2005), Amsterdam: Elsevier/North-Holland, Amsterdam · Zbl 1120.47062
[80] Mumford, D.; Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., XLII, 577-685 (1989) · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[81] Murat, F., The Neumann sieve, Nonlinear variational problems (Isola d’Elba, 1983). Res. Notes in Math, vol. 127, 24-32 (1985), Boston, MA: Pitman, Boston, MA · Zbl 0586.35037
[82] Needleman, A., Micromechanical modelling of interface decohesion, Ultramicroscopy, 40, 203-214 (1992) · doi:10.1016/0304-3991(92)90117-3
[83] Negri, M., The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional, Numer. Funct. Anal. Optim., 20, 9-10, 957-982 (1999) · Zbl 0953.49024 · doi:10.1080/01630569908816934
[84] Negri, M., A finite element approximation of the Griffith model in fracture mechanics, Numer. Math., 95, 653-687 (2003) · Zbl 1068.74080 · doi:10.1007/s00211-003-0456-y
[85] Negri, M.; Paolini, M., Numerical minimization of the Mumford-Shah functional, Calcolo, 38, 2, 67-84 (2001) · Zbl 1017.49017 · doi:10.1007/s100920170004
[86] Nguyen, O.; Repetto, E. A.; Ortiz, M.; Radovitzki, R. A., A cohesive model of fatigue crack growth, Int. J. Frac. Mech., 110, 351-369 (2001) · doi:10.1023/A:1010839522926
[87] Nguyen, Q. S., Stability and Nonlinear Solid Mechanics (2000), London: Wiley, London · Zbl 0949.74001
[88] Paris, P. C.; Gomez, M. P.; Anderson, W. E., A rational analytic theory of fatigue, Trend Eng., 13, 8, 9-14 (1961)
[89] Roe, K. L.; Siegmund, T., An irreversible cohesive zone model for interface fatigue crack growth simulation, Int. J. Frac. Mech., 70, 209-232 (2002) · doi:10.1016/S0013-7944(02)00034-6
[90] Rogers, C. A., Hausdorff Measures (1970), London: Cambridge University Press, London · Zbl 0204.37601
[91] Rudin, W., Functional Analysis (1973), New York: Mc Graw Hill, New York · Zbl 0253.46001
[92] Suquet, P.: Plasticité et homogénéisation. Doctorat d’État, Université Pierre et Marie Curie (1982)
[93] Toader, R., and Zanini, C.: An artificial viscosity approach to quasistatic crack growth. Technical report, S.I.S.S.A. http://cvgmt.sns.it/papers/ (2005)
[94] Tvergaard, V., Effect of fiber debonding in a whisker-reinforced metal, Mat. Sci. Eng. A-Struc., 125, 203-213 (1990) · doi:10.1016/0921-5093(90)90170-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.