×

Exploring improvement trajectories with dynamic process cost modelling: a case from the steel industry. (English) Zbl 1197.90171

Summary: Improvement trajectories are sequential managed chains of improvement initiatives required to handle changes in competition and market. This paper presents a five-step framework, based on dynamic process cost modelling, which was developed during a four-year research project at a major stainless steel producer, to support the selection of an improvement trajectory based on strategic requirements to combine high product diversity with cost reduction. The framework aims to develop insight into what manufacturing capabilities are required to reach the strategic goals by combining system dynamics simulation with process cost modelling and visual exploratory data analysis in an iterative modelling procedure. The applicability of the five-step framework is demonstrated through a case study from the steel industry, in which a goal driven analysis is used to assess process requirements based on performance and market considerations.

MSC:

90B30 Production models
91B38 Production theory, theory of the firm
90B60 Marketing, advertising
91B26 Auctions, bargaining, bidding and selling, and other market models

Software:

DYNAMO; GGobi
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Angerhofer, BJ and Angelides, MC. 2000. System dynamics modelling in supply chain management: research review. Proceedings of the 2000 winter simulation conference. 2000, Orlando, Florida, USA. Edited by: Fishwick, P, Kang, K, Joines, JA and Barton, RR. pp.342–351.
[2] Arnold SA, Economic modelling of multi-sequential manufacturing processes: a case study analysis of the automotive door (1989)
[3] Beck B, New Steel 16 pp 28– (2000)
[4] Bentell L, Bergsmannen 2 pp 44– (2008)
[5] DOI: 10.1016/S0272-6963(98)00033-3 · doi:10.1016/S0272-6963(98)00033-3
[6] Busch J, Research Technology Management 37 pp 50– (1994)
[7] DOI: 10.1016/j.icheatmasstransfer.2004.10.019 · doi:10.1016/j.icheatmasstransfer.2004.10.019
[8] DOI: 10.1007/978-0-387-71762-3 · doi:10.1007/978-0-387-71762-3
[9] DOI: 10.1080/09537320220133884 · doi:10.1080/09537320220133884
[10] DOI: 10.1016/j.omega.2004.07.014 · doi:10.1016/j.omega.2004.07.014
[11] DOI: 10.1016/0272-6963(90)90094-T · doi:10.1016/0272-6963(90)90094-T
[12] Field F, JOM. Journal of the Minerals, Metals and Materials Society 59 pp 21– (2007)
[13] Fisher LM, Strategy + business pp 78– (2005)
[14] DOI: 10.1016/j.jom.2004.03.002 · doi:10.1016/j.jom.2004.03.002
[15] Forrester JW, Industrial dynamics (1961)
[16] DOI: 10.1002/sdr.382 · doi:10.1002/sdr.382
[17] Fujimoto T, The evolution of a manufacturing system at Toyota (1999)
[18] DOI: 10.1111/j.1937-5956.1996.tb00383.x · doi:10.1111/j.1937-5956.1996.tb00383.x
[19] Inselberg, A and Dimsdale, B. 1990. Parallel coordinates: a tool for visualizing multi–dimensional geometry.First IEEE conference on visualization,Visualization ’90. 23–26 October1990, San Francisco, CA, USA. Edited by: Kaufman, A. pp.361–378. IEEE Computer Society Press.
[20] DOI: 10.1016/S1359-835X(98)00003-7 · doi:10.1016/S1359-835X(98)00003-7
[21] Law AM, Simulation modelling and analysis (2000)
[22] DOI: 10.1016/0305-0483(90)90058-H · doi:10.1016/0305-0483(90)90058-H
[23] DOI: 10.1002/(SICI)1099-1727(199921)15:1<37::AID-SDR158>3.0.CO;2-Z · doi:10.1002/(SICI)1099-1727(199921)15:1<37::AID-SDR158>3.0.CO;2-Z
[24] DOI: 10.1016/j.jclepro.2004.05.006 · doi:10.1016/j.jclepro.2004.05.006
[25] Ohno T, Toyota production system: beyond large-scale production (1988)
[26] DOI: 10.1080/00207540410001666260 · Zbl 1060.90011 · doi:10.1080/00207540410001666260
[27] DOI: 10.1080/00207540512331311903 · doi:10.1080/00207540512331311903
[28] Popper K, The logic of scientific discovery (1959) · Zbl 0083.24104
[29] Stamboulis, Y, Adamides, E and Malakis, T. 2002. A system-dynamics study of a resource-based approach to process development strategy.Engineering Management Conference,IEMC ’02. 18–20 August2002, Cambridge, UK. Edited by: Durrani, TS. pp.419–424. IEEE Engineering Management Society.
[30] Sterman JD, Business dynamics (2000)
[31] DOI: 10.1002/sdr.261 · doi:10.1002/sdr.261
[32] Swayne, DF, Buja, A and Lang, DT. 2003. Exploratory visual analysis of graphs in GGobi.3rd International Workshop on Distributed Statistical Computing(DSC 2003). 20–22 March2003, Vienna, Austria. Edited by: Hornik, K and Leisch, F. Vienna University of Technology.
[33] DOI: 10.1108/01443579810199748 · doi:10.1108/01443579810199748
[34] Szekely J, JOM., Journal of the Minerals, Metals and Materials Society 48 pp 43– (1996) · doi:10.1007/BF03223267
[35] DOI: 10.1016/S0377-2217(00)00240-X · Zbl 0988.90503 · doi:10.1016/S0377-2217(00)00240-X
[36] DOI: 10.1016/j.cie.2005.05.001 · doi:10.1016/j.cie.2005.05.001
[37] DOI: 10.1109/28.293702 · doi:10.1109/28.293702
[38] Tukey JW, Exploratory data analysis (1977)
[39] DOI: 10.1080/00207540050176021 · Zbl 1094.90551 · doi:10.1080/00207540050176021
[40] Wilhelm A, Handbook of Statistics 24: Data Mining and Data Visualization pp 437– (2005) · doi:10.1016/S0169-7161(04)24016-0
[41] DOI: 10.1002/smj.318 · doi:10.1002/smj.318
[42] DOI: 10.1016/S0923-4748(03)00018-3 · doi:10.1016/S0923-4748(03)00018-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.