×

Mixed perfectly-matched-layers for direct transient analysis in 2D elastic heterogeneous media. (English) Zbl 1225.74094

Summary: We are concerned with elastic waves arising in plane-strain problems in an elastic semi-infinite arbitrarily heterogeneous medium. Specifically, we discuss the development of a new mixed displacement – stress formulation for forward elastic wave simulations in perfectly-matched-layer (PML)-truncated heterogeneous media.To date, most PML formulations split the displacement and stress fields, resulting in non-physical components for each field. In this work, we favor unsplit schemes, primarily for the relative ease by which the resulting forms can be incorporated into existing codes, the ease by which the resulting semi-discrete forms can be integrated in time, and the ease by which they can be used in adjoint formulations arising in inverse problems, contrary to most past and current developments. We start by following classical lines, and apply complex-coordinate-stretching to the governing equations in the frequency domain, while retaining both displacements and stress quantities as unknowns. With the aid of auxiliary variables the resulting mixed form is rendered second-order in time, thereby allowing the use of standard time integration schemes. We report on numerical simulations demonstrating the stability and efficacy of the approach.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74E05 Inhomogeneity in solid mechanics
74J20 Wave scattering in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tsynkov, S. V., Numerical solution of problems on unbounded domains. A review, Appl. Numer. Math., 27, 4, 465-532 (1998) · Zbl 0939.76077
[2] Givoli, D.; Keller, J. B., A finite element method for large domains, Comput. Methods Appl. Mech. Engrg., 76, 41-66 (1989) · Zbl 0687.73065
[3] Givoli, D.; Keller, J. B., Non-reflecting boundary conditions for elastic waves, Wave Motion, 12, 3, 261-279 (1990) · Zbl 0708.73012
[4] Givoli, D.; Vigdergauz, S., Artificial boundary conditions for 2D problems in geophysics, Comput. Methods Appl. Mech. Engrg., 110, 87-101 (1993) · Zbl 0846.73049
[5] Engquist, B.; Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 31, 139, 629-651 (1977) · Zbl 0367.65051
[6] Bayliss, A.; Turkel, E., Radiation boundary conditions for wave-like equations, Commun. Pure Appl. Math., 33, 707-725 (1980) · Zbl 0438.35043
[7] Higdon, R. L., Absorbing boundary conditions for elastic waves, Geophysics, 56, 2, 231-241 (1991)
[8] Givoli, D.; Neta, B., High-order non-reflecting boundary scheme for time-dependent waves, J. Comput. Phys., 186, 1, 24-26 (2003) · Zbl 1025.65049
[9] Kallivokas, L. F.; Lee, S., Local absorbing boundaries of elliptical shape for scalar waves, Comput. Methods Appl. Mech. Engrg., 193, 4979-5015 (2004) · Zbl 1112.76449
[10] Bérenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200 (1994) · Zbl 0814.65129
[11] Bérenger, J.-P., Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 127, 363-379 (1996) · Zbl 0862.65080
[12] Chew, W. C.; Weedon, W. H., A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates, Micro. Opt. Tech. Lett., 7, 599-604 (1994)
[13] Gedney, S. D., An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices, IEEE Trans. Antennas Propagat., 44, 12, 1630-1639 (1996)
[14] Kuzuoglu, M.; Mittra, R., Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers, IEEE Microwave Guided Wave Lett., 6, 12, 447-449 (1996)
[15] Teixeira, F. L.; Chew, W. C., On causality and dynamic stability of perfectly matched layers for FDTD simulations, IEEE Trans. Microwave Theory Tech., 47, 6, 775-785 (1999)
[16] Roden, J. A.; Gedney, S. D., An efficient FDTD implementation of the PML with CFS in general media, IEEE Antennas Propagat. Soc. Int. Symp., 3, 1265-1362 (2000)
[17] Teixeira, F. L.; Chew, W. C., Complex space approach to perfectly matched layers: a review and some new developments, Int. J. Numer. Model., 13, 441-455 (2000) · Zbl 1090.78534
[18] Knockaert, L.; de Zutter, D., On the stretching of Maxwell’s equations in general orthogonal coordinates systems and the perfectly matched layer, Microwave Opt. Technol. Lett., 24, 1, 31-34 (2000)
[19] J. Maloney, M. Kesler, G. Smith, Generalization of PML to cylindrical geometries, in: Proceedings of 13th Annu. Rev. of Prog. Appl. Comp. Electromag., vol. 2, Monterey, CA, 1997, pp. 900-908.; J. Maloney, M. Kesler, G. Smith, Generalization of PML to cylindrical geometries, in: Proceedings of 13th Annu. Rev. of Prog. Appl. Comp. Electromag., vol. 2, Monterey, CA, 1997, pp. 900-908.
[20] Teixeira, F. L.; Chew, W. C., Perfectly matched layer in cylindrical coordinates, (Antennas and Propagation Society International Symposium Digest, vol. 3 (1997), IEEE: IEEE Montreal, Canada), 1908-1911
[21] W.C. Chew, J.M. Jin, E. Michielssen, Complex coordinate system as a generalized absorbing boundary condition, in: Proceedings of 13th Annu. Rev. of Prog. Appl. Comp. Electromag., vol. 25, Monterey, CA, 1997, pp. 909-914.; W.C. Chew, J.M. Jin, E. Michielssen, Complex coordinate system as a generalized absorbing boundary condition, in: Proceedings of 13th Annu. Rev. of Prog. Appl. Comp. Electromag., vol. 25, Monterey, CA, 1997, pp. 909-914.
[22] Teixeira, F. L.; Chew, W. C., PML-FDTD in cylindrical and spherical grids, IEEE Microwave Guided Wave Lett., 7, 9, 285-287 (1997)
[23] Teixeira, F. L.; Chew, W. C., Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates, IEEE Microwave Guided Wave Lett., 7, 11, 371-373 (1997)
[24] Collino, F.; Monk, P., The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19, 6, 2061-2090 (1998) · Zbl 0940.78011
[25] Collino, F.; Monk, P. B., Optimizing the perfectly matched layer, Comput. Methods Appl. Mech. Engrg., 164, 157-171 (1998) · Zbl 1040.78524
[26] Liu, Q. H.; He, J. Q., Quasi-PML for waves in cylindrical coordinates, Microwave Opt. Technol. Lett., 19, 2, 107-111 (1998)
[27] He, J.-Q.; Liu, Q. H., A nonuniform cylindrical FDTD algorithm with improved PML and Quasi-PML absorbing boundary conditions, IEEE Trans. Geosci. Remote Sens., 37, 2, 1066-1072 (1999)
[28] Zhao, L., The generalized theory of perfectly matched layers (GT-PML) in curvilinear co-ordinates, Int. J. Numer. Model., 13, 457-469 (2000) · Zbl 1090.78536
[29] Donderici, B.; Teixeira, F. L., Mixed finite-element time-domain method for transient Maxwell equations in doubly dispersive media, IEEE Trans. Microwave Theory Tech., 56, 1, 113-120 (2008)
[30] Donderici, B.; Teixeira, F. L., Conformal perfectly matched layer for the mixed finite element time-domain method, IEEE Trans. Antennas Propagat., 56, 4, 1017-1026 (2008) · Zbl 1369.78657
[31] Bérenger, J.-P., Evanescent waves in PML’s: origin of the numerical reflection in wave-structure interaction problems, IEEE Trans. Antennas Propagat., 47, 10, 1497-1503 (1999) · Zbl 0955.78003
[32] Roden, J. A.; Gedney, S. D., Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media, Microwave Opt. Technol. Lett., 27, 5, 334-339 (2000)
[33] Bérenger, J.-P., Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs, IEEE Trans. Antennas Propagat., 50, 3, 258-265 (2002)
[34] Bérenger, J.-P., Application of the CFS PML to the absorption of evanescent waves in waveguides, IEEE Microwave Wireless Compon. Lett., 12, 6, 218-220 (2002)
[35] Bécache, E.; Petropoulos, P. G.; Gedney, S. D., On the long-time behavior of unsplit perfectly matched layers, IEEE Trans. Antennas Propagat., 52, 5, 1335-1342 (2004) · Zbl 1368.78159
[36] Correia, D.; Jin, J.-M., On the development of a higher-order PML, IEEE Trans. Antennas Propagat., 53, 12, 4157-4163 (2005)
[37] Correia, D.; Jin, J.-M., Performance of regular PML, CFS-PML, and second-order PML for waveguide problems, Microwave Opt. Technol. Lett., 48, 10, 2121-2126 (2006)
[38] Lou, Z.; Correia, D.; Jin, J.-M., Second-order perfectly matched layers for the time-domain finite-element method, IEEE Trans. Antennas Propagat., 55, 3, 1000-1004 (2007) · Zbl 1369.78683
[39] Chew, W. C.; Liu, Q. H., Perfectly matched layers for elastodynamics: a new absorbing boundary condition, J. Comput. Acoust., 4, 4, 341-359 (1996)
[40] Hastings, F. D.; Schneider, J. B.; Broschat, S. L., Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation, J. Acoust. Soc. Am., 100, 5, 3061-3069 (1996)
[41] Liu, Q. H., Perfectly matched layers for elastic waves in cylindrical and spherical coordinates, J. Acoust. Soc. Am., 105, 4, 2075-2084 (1999)
[42] Collino, F.; Tsogka, C., Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Geophysics, 66, 1, 294-307 (2001)
[43] Bécache, E.; Joly, P.; Tsogka, C., Fictitious domains, mixed finite elements and perfectly matched layers for 2D elastic wave propagation, J. Comput. Acoust., 9, 3, 1175-1202 (2001) · Zbl 1360.74156
[44] Komatitsch, D.; Tromp, J., A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation, Geophys. J. Int., 154, 146-153 (2003)
[45] Wang, T.; Tang, X., Finite-difference modeling of elastic wave propagation: a nonsplitting perfectly matched layer approach, Geophysics, 68, 5, 1749-1755 (2003)
[46] Basu, U.; Chopra, A. K., Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation, Comput. Methods Appl. Mech. Engrg., 192, 1337-1375 (2003) · Zbl 1041.74035
[47] Basu, U.; Chopra, A. K., Perfectly matched layers for transient elastodynamics of unbounded domains, Int. J. Numer. Methods Engrg., 59, 1039-1074 (2004) · Zbl 1042.74523
[48] Basu, U., Explicit finite element perfectly matched layer for transient three-dimensional elastic waves, Int. J. Numer. Methods Engrg., 77, 151-176 (2009) · Zbl 1257.74146
[49] Cohen, G.; Fauqueux, S., Mixed spectral finite elements for the linear elasticity system in unbounded domains, SIAM J. Sci. Comput., 26, 3, 864-884 (2005) · Zbl 1080.74044
[50] Festa, G.; Vilotte, J.-P., The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics, Geophys. J. Int., 161, 789-812 (2005)
[51] Drossaert, F. H.; Giannopoulos, A., A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves, Geophysics, 72, 2, T9-T17 (2007)
[52] Drossaert, F. H.; Giannopoulos, A., Complex frequency shifted convolution PML for FDTD modelling of elastic waves, Wave Motion, 44, 7-8, 593-604 (2007) · Zbl 1231.74253
[53] Bécache, E.; Fauqueux, S.; Joly, P., Stability of perfectly matched layers, group velocities and anisotropic waves, J. Comput. Phys., 188, 399-433 (2003) · Zbl 1127.74335
[54] Meza-Fajardo, K. C.; Papageorgiou, A. S., A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis, Bull. Seismol. Soc. Am., 98, 4, 1811-1836 (2008)
[55] Festa, G.; Nielsen, S., PML absorbing boundaries, Bull. Seismol. Soc. Am., 93, 2, 891-903 (2003)
[56] Komatitsch, D.; Martin, R., An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics, 72, 5, SM155-SM167 (2007)
[57] Harari, I.; Albocher, U., Studies of FE/PML for exterior problems of time-harmonic elastic waves, Comput. Methods Appl. Mech. Engrg., 195, 3854-3879 (2006) · Zbl 1119.74048
[58] Michler, C.; Demkowicz, L.; Kurtz, J.; Pardo, D., Improving the performance of perfectly matched layers by means of hp-adaptivity, Numer. Methods Partial Diff. Eqs., 23, 4, 832-858 (2007) · Zbl 1118.65123
[59] Martin, Roland; Komatitsch, Dimitri; Gedney, Stephen D., A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation, Comput. Model. Engrg. Sci., 37, 3, 274-304 (2008)
[60] Arnold, D. N., Mixed finite element methods for elliptic problems, Comput. Methods Appl. Mech. Engrg., 82, 281-300 (1990) · Zbl 0729.73198
[61] Brezzi, F., A survey of mixed finite element method, (Dwoyer, D.; Hussaini, M.; Voigt, R., Finite Elements Theory and Application (1988), Springer-Verlag: Springer-Verlag New York), 34-49
[62] Raviart, P. A.; Thomas, J. M., A mixed finite element method for second order elliptic problems, (Galligani, I.; Magenes, E., Mathematical Aspects of the Finite Element Method. Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, vol. 606 (1977), Springer-Verlag: Springer-Verlag New York), 292-315 · Zbl 0362.65089
[63] Johnson, C.; Mercier, B., Some equilibrium finite element methods for two-dimensional elasticity problems, Numer. Math., 30, 103-116 (1978) · Zbl 0427.73072
[64] Brezzi, F.; Douglas, J.; Marini, L. D., Two families of mixed finite element methods for second order elliptic problems, Numer. Math., 47, 217-235 (1985) · Zbl 0599.65072
[65] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the stokes equations, Calcolo, 21, 337-344 (1984) · Zbl 0593.76039
[66] Arnold, D. N.; Brezzi, F.; Douglas, J., PEERS: a new mixed finite element for plane elasticity, Jpn. J. Appl. Math., 1, 347-367 (1984) · Zbl 0633.73074
[67] Oden, J. T.; Reddy, J. N., On mixed finite element approximations, SIAM J. Numer. Anal., 13, 3, 393-404 (1976) · Zbl 0337.65056
[68] Nédélec, J. C., Mixed finite elements in \(R^3\), Numer. Math., 35, 315-341 (1980) · Zbl 0419.65069
[69] Arnold, D. N.; Douglas, J.; Gupta, C. P., A family of higher order mixed finite element methods for plane elasticity, Numer. Math., 45, 1-22 (1984) · Zbl 0558.73066
[70] Marini, L. D., An inexpensive method for the evaluation of the solution of the lowest order Raviart-thomas mixed method, SIAM J. Numer. Anal., 22, 3, 493-496 (1985) · Zbl 0573.65082
[71] Nédélec, J. C., A new family of mixed finite elements in \(R^3\), Numer. Math., 50, 57-81 (1986) · Zbl 0625.65107
[72] Arnold, D. N.; Falk, R. S., A new mixed formulation for elasticity, Numer. Math., 53, 13-30 (1988) · Zbl 0621.73102
[73] Stenberg, R., A family of mixed finite elements for the elasticity problem, Numer. Math., 53, 513-538 (1988) · Zbl 0632.73063
[74] Frasca, L. P.; Hughes, T. J.R.; Loula, A. F.D.; Miranda, I., A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation, Numer. Math., 53, 123-141 (1988) · Zbl 0656.73036
[75] Morley, M. E., A family of mixed finite elements for linear elasticity, Numer. Math., 55, 633-666 (1989) · Zbl 0671.73054
[76] Brezzi, F.; Marini, D., A survey on mixed finite element approximations, IEEE Trans. Magn., 30, 5, 3547-3551 (1994)
[77] Bécache, E.; Joly, P.; Tsogka, C., An analysis of new mixed finite elements for the approximation of wave propagation problems, SIAM J. Numer. Anal., 37, 4, 1053-1084 (2000) · Zbl 0958.65102
[78] Arnold, D. N.; Winther, R., Mixed finite elements for elasticity, Numer. Math., 92, 401-419 (2002) · Zbl 1090.74051
[79] Bécache, E.; Joly, P.; Tsogka, C., A new family of mixed finite elements for the linear elastodynamic problem, SIAM J. Numer. Anal., 39, 6, 2109-2132 (2002) · Zbl 1032.74049
[80] Arnold, D. N.; Winther, R., Mixed finite elements for elasticity in the stress-displacement formulation, (Chen, Z.; Glowinski, R.; Li, K., Current Trends in Scientific Computing, Contemporary Mathematics, vol. 329 (2003), American Mathematical Society), 33-42 · Zbl 1138.74388
[81] Arnold, D. N.; Awanou, G., Rectangular mixed finite elements for elasticity, Math. Model. Methods Appl. Sci., 15, 9, 1417-1429 (2005) · Zbl 1077.74044
[82] Chen, Z., Finite Element Methods and Their Applications (2005), Springer: Springer New York
[83] Arnold, D. N.; Falk, R. S.; Winther, R., Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math. Comput., 76, 260, 1699-1723 (2007) · Zbl 1118.74046
[84] Kallivokas, L. F.; Bielak, J.; MacCamy, R. C., A simple impedance-infinite element for the finite element solution of the three-dimensional wave equation in unbounded domains, Comput. Methods Appl. Mech. Engrg., 147, 235-262 (1997) · Zbl 0901.76033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.