zbMATH — the first resource for mathematics

Fault diagnosis of batch processes using discriminant model. (English) Zbl 1059.93126
A two-phase technique for on-line fault diagnosis of a batch process is developed. First, the reference model is built up off-line using statistical classification: the fault data of past batches are classified into groups where each group contains a set of unsuccessful batches belonging to a particular fault. Then the current batch is referenced against the model and is classified on-line into one of the fault groups. The batch run stages of a popular polyvinyl chloride polymerization process are selected to illustrate all diagnostic steps. It is outlined that the proposed method outperforms (in terms of the rate of diagnosis success, especially at early time intervals) the known principal component analysis-based methods.

93E10 Estimation and detection in stochastic control theory
60G35 Signal detection and filtering (aspects of stochastic processes)
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62N05 Reliability and life testing
93C95 Application models in control theory
80A50 Chemistry (general) in thermodynamics and heat transfer
Full Text: DOI
[1] DOI: 10.1016/S0098-1354(01)00701-3
[2] DOI: 10.1016/0959-1524(94)80040-5
[3] Bouqé R, American Institute of Chemical Engineering Journal 45 pp 1504– (1999)
[4] DOI: 10.1115/1.2803648
[5] DOI: 10.1016/S0031-3203(99)00139-9 · Zbl 02180927
[6] DOI: 10.1016/0031-3203(92)90010-G
[7] DOI: 10.1016/S0169-7439(99)00061-1
[8] Cho HW, Journal of Quality Technology 35 pp 59– (2003)
[9] DOI: 10.1109/TAC.1984.1103593 · Zbl 0542.90040
[10] DOI: 10.1016/S0098-1354(00)00374-4
[11] DOI: 10.1080/002075497195155 · Zbl 0943.90575
[12] Duda RO, Pattern Classification and Scene Analysis (1973)
[13] DOI: 10.1002/aic.690421011
[14] DOI: 10.1111/j.1469-1809.1936.tb02137.x
[15] DOI: 10.1016/0005-1098(90)90018-D · Zbl 0713.93052
[16] DOI: 10.1016/0098-1354(79)80079-4
[17] DOI: 10.1080/002075499190662 · Zbl 0949.90559
[18] Kaspar MH, American Institute of Chemical Engineering Journal 38 pp 1593– (1992)
[19] DOI: 10.1016/0959-1524(95)00019-M
[20] Kourti T, Journal of Quality Technology 28 pp 409– (1996)
[21] Ku W, AIChE Annual Meeting (1993)
[22] DOI: 10.1002/aic.690400509
[23] DOI: 10.1016/0169-7439(95)00043-7
[24] DOI: 10.2307/1269152 · Zbl 0825.62740
[25] DOI: 10.1002/aic.690420412
[26] DOI: 10.1016/S0098-1354(96)00299-2
[27] Tian Q, Optimization and Engineering 25 pp 834– (1986)
[28] DOI: 10.1080/002075400189338 · Zbl 0944.90519
[29] DOI: 10.1016/S0031-3203(00)00162-X · Zbl 0993.68091
[30] DOI: 10.1002/aic.690290211
[31] DOI: 10.1016/0098-1354(94)80132-0
[32] Wise BM Ricker NL Veltkamp DF 1989 Upset and sensor failure detection in multivariate processes Technical Report, Eigenvector Research, Manson Washington
[33] DOI: 10.1016/0959-1524(96)00009-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.