×

MHD flow and heat transfer from continuous surface in uniform free stream of non-Newtonian fluid. (English) Zbl 1231.34015

Summary: An analysis is carried out to study the steady flow and heat transfer characteristics from a continuous flat surface moving in a parallel free stream of an electrically conducting non-Newtonian viscoelastic fluid. The flow is subjected to a transverse uniform magnetic field. The constitutive equation of the fluid is modeled by that for a second grade fluid. Numerical results are obtained for the distribution of velocity and temperature profiles. The effects of various physical parameters like viscoelastic parameter, magnetic parameter and Prandtl number on various momentum and heat transfer characteristics are discussed in detail and shown graphically.

MSC:

34A34 Nonlinear ordinary differential equations and systems
34B15 Nonlinear boundary value problems for ordinary differential equations
76A05 Non-Newtonian fluids
76A10 Viscoelastic fluids
76M20 Finite difference methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Papanastasiou T C, Georgiou G C, Alexandrou A N. Viscous fluid flow[M]. Boca Raton: CRC Press, 2000. · Zbl 0946.76001
[2] Sakiadis B C. Boundary-layer behavior on continuous solid surfaces: I. Boundary layer equations for two dimensional and axisymmetric flow[J]. American Institute of Chemical Engineers Journal, 1961, 7:26–28.
[3] Sakiadis B C. Boundary layer behavior on continuous solid surface: the boundary layer on a continuous flat surface[J]. American Institute of Chemical Engineers Journal, 1961, 7:221–224.
[4] Crane L J. Flow past a stretching sheet[J]. Journal of Applied Mathematics and Physics, ZAMP, 1970, 21:645–647. · doi:10.1007/BF01587695
[5] Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J]. Canadian Journal Chemical Engineering, 1977, 55:744–746. · doi:10.1002/cjce.5450550619
[6] Rivlin R S, Ericksen J L. Stress deformation relations for isotropic materials[J]. Journal of Rational Mechanics and Analysis, 1955, 4:323–425. · Zbl 0064.42004
[7] Dunn J E, Fosdick R L. Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade[J]. Archive for Rational Mechanics and Analysis, 1974, 56:191–252. · Zbl 0324.76001 · doi:10.1007/BF00280970
[8] Dunn J E, Rajagopal K R. Fluids of differential type, critical review and thermodynamic analysis[J]. International Journal of Engineering Science, 1995, 33:689–729. · Zbl 0899.76062 · doi:10.1016/0020-7225(94)00078-X
[9] Fosdick R L, Rajagopal K R. Anomalous feature in the model of ”second order fluids”[J]. Archive for Rational Mechanics and Analysis, 1979, 70:145–152. · Zbl 0427.76006 · doi:10.1007/BF00250351
[10] Galdi G P, Padula M, Rajagopal K R. On the conditional stability of the rest state of a fluid of second grade in unbounded domains[J]. Archive for Rational Mechanics and Analysis, 1990, 109:173–182. · Zbl 0697.76018 · doi:10.1007/BF00405241
[11] Fox V G, Ericksen L E, Fan L T. The laminar boundary layer on a moving continuous flat sheet immersed in a non-Newtonian fluid[J]. American Institute of Chemical Engineers Journal, 1969, 15:327–333.
[12] Rajagopal K R, Na T Y, Gupta A S. Flow of a viscoelastic fluid over a stretching sheet[J]. Rheological Acta, 1984, 24:213–215. · doi:10.1007/BF01332078
[13] Troy W C, Overman E A, Ermentrout H G B, Keener J P. Uniqueness of flow of a second-order fluid past a stretching sheet[J]. Quarterly Journal of Applied Mathematics, 1987, 44:753–755. · Zbl 0613.76006
[14] Sadeghy K, Sharifi M. Local similarity solution for the flow of a ”second-grade” viscoelastic fluid above a moving plate[J]. International Journal Non-linear Mechanics, 2004, 39:1265–1273. · Zbl 1348.76064 · doi:10.1016/j.ijnonlinmec.2003.08.005
[15] Sadeghy K, Najafi A H, Saffaripour M. Sakiadis flow of an upper convected Maxwell fluid[J]. International Journal Non-linear Mechanics, 2005, 40:1220–1228. · Zbl 1349.76081 · doi:10.1016/j.ijnonlinmec.2005.05.006
[16] Hassanien I A. Flow and heat transfer from a continuous surface in a parallel free stream of viscoelastic second-order fluid[J]. Applied Scientific Research, 1992, 49:335–344. · Zbl 0763.76005 · doi:10.1007/BF00419979
[17] Hady F M, Gorla R S R. Heat transfer from a continuous surface in a parallel free stream of viscoelastic fluid[J]. Acta Mechanica, 1998, 128:201–208. · Zbl 0944.76004 · doi:10.1007/BF01251890
[18] Bhatnagar R K, Gupta G, Rajagopal K R. Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity[J]. International Journal Non-linear Mechanics, 1995, 30:391–405. · Zbl 0837.76009 · doi:10.1016/0020-7462(94)00027-8
[19] Allan F M. Similarity solutions of a boundary layer problem over moving surfaces[J]. Applied Mathematics Letter, 1997, 10:81–85. · Zbl 0895.76025 · doi:10.1016/S0893-9659(97)00015-3
[20] Kumari M, Nath G. MHD boundary-layer flow of a non-Newtonian fluid over a continuously moving surface with a parallel free stream[J]. Acta Mechanica, 2001, 146:139–150. · Zbl 1008.76099 · doi:10.1007/BF01246729
[21] Abo-Eldahab E M, Salem A M. MHD free-convection flow of a non-Newtonian power-law fluid at a stretching surface with a uniform free-stream[J]. Applied Mathematics and Computation, 2005, 169:806–818. · Zbl 1151.76625 · doi:10.1016/j.amc.2004.09.089
[22] Rajeshwari G K, Rathna S L. Flow of a particular class of non-Newtonian visco-elastic fluid near a stagnation point[J]. Journal of Applied Mathematics and Physics, ZAMP, 1962, 13:43–57. · Zbl 0105.19503 · doi:10.1007/BF01600756
[23] Beard D W, Walters K. Elastico-viscous boundary layer flows. I. Two-dimensional flow near a stagnation point[J]. Proceedings Cambridge Philosophical Society, 1964, 60:667–674. · Zbl 0123.41601 · doi:10.1017/S0305004100038147
[24] Mishra S P, Mohapatra U. Elasticoviscous flow between a rotating and a stationary disk with uniform suction at the stationary disk[J]. Journal of Applied Physics, 1977, 48:1515–1521. · doi:10.1063/1.323871
[25] Shrestha G M. Laminar elastico-viscous flow through channels with porous walls with different permeability[J]. Applied Science Research, 1969, 20:289–305. · doi:10.1007/BF00382401
[26] Garg V K, Rajagopal K R. Stagnation point flow of a non-Newtonian fluid[J]. Mechanics Research Communication, 1990, 17:415–421. · Zbl 0727.76003 · doi:10.1016/0093-6413(90)90059-L
[27] Garg V K, Rajagopal K R. Flow of a non-Newtonian fluid past a wedge[J]. Acta Mechanica, 1991, 88:113–123. · doi:10.1007/BF01170596
[28] Davies M H. A note a elastico-viscous boundary layer flows[J]. Journal of Applied Mathematics and Physics, ZAMP, 1960, 17:189–191. · doi:10.1007/BF01594096
[29] Chiang K T. Dealing with complicated starting value in shooting process with Broyden’s mehtod: examples of the onset of convection for the viscoelastic fluid[J]. International Communication in Heat and Mass Transfer, 2004, 31:815–826. · doi:10.1016/S0735-1933(04)00068-5
[30] Teipel I. Die Räumliche staupunktströmung für ein viscoelastisches fluid[J]. Rheological Acta, 1986 25:75–79. · Zbl 0626.76011 · doi:10.1007/BF01332126
[31] Ariel P D. A hybrid method for computing the flow of viscoelastic fluids[J]. International Journal for Numerical Methods in Fluids, 1992, 14:757–774. · Zbl 0753.76111 · doi:10.1002/fld.1650140702
[32] Labropulu F, Xu X, Chinichian M. Unsteady stagnation point flow of a non-Newtonian second grade fluid[J]. International Journal of Mathematics and Mathematical Sciences, 2003, 60:3797–3807. · Zbl 1033.76001 · doi:10.1155/S0161171203212357
[33] Labropulu F, Husain I, Chinichian M. Stagnation point flow of the Walters’ B fluid with slip[J]. International Journal of Mathematics and Mathematical Sciences, 2004, 61:3249–3258. · Zbl 1065.76017 · doi:10.1155/S0161171204406528
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.