×

Chemorheological relaxation, residual stress, and permanent set arising in radial deformation of elastomeric hollow spheres. (English) Zbl 1001.74521

Summary: Recently, a constitutive theory for rubber-like materials has been developed by which stress arises from different micromechanisms at different levels of deformation. For small deformations, the stress is given by the usual theory of rubber elasticity. As the deformation increases, there is scission of some junctions of the macromolecular microstructure. Junctions then reform to generate a new microstructure. The constitutive equation allows for continuous scission of the original junctions and formation of new ones as deformation increases. The macromolecular scission causes stress reduction, termed chemorheological relaxation. The new macromolecular structure results in permanent set on release of external load.
The present work considers a hollow sphere composed of such a material, also assumed to be incompressible and isotropic, which undergoes axisymmetric deformation under radial traction. There develops an outer zone of material with the original microstructure and an inner zone of material having undergone macromolecular scission, separated by a spherical interface whose radius increases with the deformation. The stress distribution, radial load-expansion response, residual stress distribution, and permanent set on release of traction are determined. It is found that a residual state of high compressive stress can arise in a thin layer of material at the inner boundary of the sphere.

MSC:

74B20 Nonlinear elasticity
74M25 Micromechanics of solids
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Rajagopal, K. R., Int. J. Plast. 8 pp 385– (1992) · Zbl 0765.73005 · doi:10.1016/0749-6419(92)90056-I
[2] Tobolsky, A. V., Properties and Structure of Polymers (1960)
[3] Wineman, A. S., Arch. Mech. 42 (1) pp 53– (1990)
[4] Wineman, A. S., Int. J. Solids Structures 31 (23) pp 3295– (1994) · Zbl 0944.74616 · doi:10.1016/0020-7683(94)90101-5
[5] Rajagopal, K. R., Int. J. Plast. 11 pp 653– (1995) · Zbl 0858.73006 · doi:10.1016/S0749-6419(95)00027-5
[6] Spencer, A.J.M., Continuum Mechanics (1980) · Zbl 0427.73001
[7] Rajagopal, K. R., On constitutive relations and material modelling in continuum mechanics (1995)
[8] Carroll, M. M., Int. J. Eng. Sci. 5 pp 515– (1967) · doi:10.1016/0020-7225(67)90038-9
[9] Carroll, M. M., Quarterly of Applied Mathematics 45 (1) pp 141– (1987) · Zbl 0619.73035 · doi:10.1090/qam/885176
[10] Hart-Smith, L. J., Zeitschriftftir Angewandte Mathematik und Physik 17 pp 608– (1966) · doi:10.1007/BF01597242
[11] Beatty, M. F., Appl. Mech. Rev. 40 (12) pp 1699– (1987) · doi:10.1115/1.3149545
[12] Sue, H.-J., J. Mat. Sci. 24 pp 1447– (1989) · doi:10.1007/BF02397085
[13] Alexander, H., Int. J. Eng. Sci. 6 pp 549– (1968) · doi:10.1016/0020-7225(68)90006-2
[14] Treloar, L.R.G., The Physics of Rubber Elasticity, 3. ed. (1975) · Zbl 0347.73042
[15] Horgan, C. O., J. Elast. 21 pp 61– (1989) · Zbl 0687.73017 · doi:10.1007/BF00040934
[16] Horgan, C. O., Trans. ASME 56 pp 302– (1989) · Zbl 0711.73042 · doi:10.1115/1.3176084
[17] Chou-Wang, M.-S., Int. J. Solids Structures 25 (11) pp 1239– (1989) · Zbl 0703.73025 · doi:10.1016/0020-7683(89)90088-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.