×

zbMATH — the first resource for mathematics

Log BPS numbers of log Calabi-Yau surfaces. (English) Zbl 07288869
Summary: Let \((S,E)\) be a log Calabi-Yau surface pair with \(E\) a smooth divisor. We define new conjecturally integer-valued counts of \(\mathbb{A}^1\)-curves in \((S,E)\). These log BPS numbers are derived from genus 0 log Gromov-Witten invariants of maximal tangency along \(E\) via a formula analogous to the multiple cover formula for disk counts. A conjectural relationship to genus 0 local BPS numbers is described and verified for del Pezzo surfaces and curve classes of arithmetic genus up to 2. We state a number of conjectures and provide computational evidence.
MSC:
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14J33 Mirror symmetry (algebro-geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abramovich, Dan; Chen, Qile, Stable logarithmic maps to Deligne-Faltings pairs II, Asian J. Math., 18, 3, 465-488 (2014) · Zbl 1321.14025
[2] Abramovich, Dan; Marcus, Steffen; Wise, Jonathan, Comparison theorems for Gromov-Witten invariants of smooth pairs and of degenerations, Ann. Inst. Fourier (Grenoble), 64, 4, 1611-1667 (2014) · Zbl 1317.14123
[3] Alim, M.; Hecht, M.; Jockers, H.; Mayr, P.; Mertens, A.; Soroush, M., Hints for off-shell mirror symmetry in type II/F-theory compactifications, Nuclear Phys. B, 841, 3, 303-338 (2010) · Zbl 1207.81093
[4] Auroux, Denis, Mirror symmetry and \(T\)-duality in the complement of an anticanonical divisor, J. G\"okova Geom. Topol. GGT, 1, 51-91 (2007) · Zbl 1181.53076
[5] BN L. Barrott and N. Nabijou, \emph Tangent curves to degenerating hypersurfaces, in preparation, 2020.
[6] Beauville, Arnaud, Counting rational curves on \(K3\) surfaces, Duke Math. J., 97, 1, 99-108 (1999) · Zbl 0999.14018
[7] Behrend, K., Algebraic Gromov-Witten invariants. New trends in algebraic geometry, Warwick, 1996, London Math. Soc. Lecture Note Ser. 264, 19-70 (1999), Cambridge Univ. Press, Cambridge · Zbl 0966.14041
[8] Bou19b P. Bousseau, \emph A proof of N. Takahashi’s conjecture on genus zero Gromov-Witten theory of \((\mathbb P^2,E)\), \arXiv 1909.02992.
[9] Bousseau, Pierrick, Quantum mirrors of log Calabi-Yau surfaces and higher-genus curve counting, Compos. Math., 156, 2, 360-411 (2020) · Zbl 07159514
[10] Bou2 P. Bousseau, \emph The quantum tropical vertex, \arXiv 1806.11495.
[11] Bou19a P. Bousseau, \emph Scattering diagrams, stability conditions, and coherent sheaves on \(\mathbb P^2\), \arXiv 1909.02985.
[12] Bousseau, Pierrick, Tropical refined curve counting from higher genera and lambda classes, Invent. Math., 215, 1, 1-79 (2019) · Zbl 07015696
[13] BBvG1 P. Bousseau, A. Brini and M. van Garrel, \emph On the log-local principle for the toric boundary, \arXiv 1908.04371.
[14] BBvG2 P. Bousseau, A. Brini and M. van Garrel, \emph Stable maps to Looijenga pairs, in preparation, 2020.
[15] Bryan, Jim; Pandharipande, Rahul, BPS states of curves in Calabi-Yau 3-folds, Geom. Topol., 5, 287-318 (2001) · Zbl 1063.14068
[16] CPS M. Carl, M. Pumperla and B. Siebert, \emph A tropical view on Landau-Ginzburg models, preprint available at \urlhttps://www.math.uni-hamburg.de/home/siebert/research/research.html.
[17] Chen, Qile, Stable logarithmic maps to Deligne-Faltings pairs I, Ann. of Math. (2), 180, 2, 455-521 (2014) · Zbl 1311.14028
[18] Chen, Xi, A simple proof that rational curves on \(K3\) are nodal, Math. Ann., 324, 1, 71-104 (2002) · Zbl 1039.14019
[19] CGKT J. Choi, M. van Garrel, S. Katz and N. Takahashi, \emph Local BPS numbers: Enumerative aspects and wall-crossing, Int. Math. Res. Notices, published online on 02 August 2018, rny171, \urlhttps://doi.org/10.1093/imrn/rny171.
[20] CGKT3 J. Choi, M. van Garrel, S. Katz and N. Takahashi, \emph Sheaves of maximal intersection and multiplicities of stable log maps \arXiv 1908.10906.
[21] CJL T. Collins, A. Jacob, Y.-S. Lin, \emph Special Lagrangian submanifolds of log Calabi-Yau manifolds, \arXiv 1904.08363
[22] Derenthal, Ulrich; Joyce, Michael; Teitler, Zachariah, The nef cone volume of generalized del Pezzo surfaces, Algebra Number Theory, 2, 2, 157-182 (2008) · Zbl 1158.14032
[23] DL L. Diogo and S. Lisi, \emph Symplectic Homology for complements of smooth divisors, \arXiv 1804.08014. · Zbl 07138352
[24] Di Rocco, Sandra, \(k\)-very ample line bundles on del Pezzo surfaces, Math. Nachr., 179, 47-56 (1996) · Zbl 0870.14031
[25] Fan, Honglu; Tseng, Hsian-Hua; You, Fenglong, Mirror theorems for root stacks and relative pairs, Selecta Math. (N.S.), 25, 4, Paper No. 54, 25 pp. (2019) · Zbl 1443.14057
[26] Fantechi, B.; G\"ottsche, L.; van Straten, D., Euler number of the compactified Jacobian and multiplicity of rational curves, J. Algebraic Geom., 8, 1, 115-133 (1999) · Zbl 0951.14017
[27] Fukaya, Kenji; Oh, Yong-Geun; Ohta, Hiroshi; Ono, Kaoru, Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J., 151, 1, 23-174 (2010) · Zbl 1190.53078
[28] van Garrel, Michel, Local and relative BPS state counts for del Pezzo surfaces. String-Math 2014, Proc. Sympos. Pure Math. 93, 215-220 (2016), Amer. Math. Soc., Providence, RI · Zbl 1365.14055
[29] ga_ipmuM. van Garrel, \emph On a conjecture by N. Takahashi on log mirror symmetry for the projective plane, AMS Adv. Stud. Pure Math. no. 83, 2019, Primitive forms and related subjects - Kavli IPMU 2014, pp. 117-126. · Zbl 1452.14042
[30] van Garrel, Michel; Graber, Tom; Ruddat, Helge, Local Gromov-Witten invariants are log invariants, Adv. Math., 350, 860-876 (2019) · Zbl 1440.14260
[31] van Garrel, Michel; Overholser, D. Peter; Ruddat, Helge, Enumerative aspects of the Gross-Siebert program. Calabi-Yau varieties: arithmetic, geometry and physics, Fields Inst. Monogr. 34, 337-420 (2015), Fields Inst. Res. Math. Sci., Toronto, ON · Zbl 1329.14104
[32] van Garrel, Michel; Wong, Tony W. H.; Zaimi, Gjergji, Integrality of relative BPS state counts of toric del Pezzo surfaces, Commun. Number Theory Phys., 7, 4, 671-687 (2013) · Zbl 1405.14100
[33] Gathmann, Andreas, Absolute and relative Gromov-Witten invariants of very ample hypersurfaces, Duke Math. J., 115, 2, 171-203 (2002) · Zbl 1042.14032
[34] Gathmann, Andreas, Relative Gromov-Witten invariants and the mirror formula, Math. Ann., 325, 2, 393-412 (2003) · Zbl 1043.14016
[35] GV1 R. Gopakumar and C. Vafa, \emph M-theory and topological strings-I, \arXiv hep-th/9809187, 1998.
[36] GV2 R. Gopakumar and C. Vafa, \emph M-theory and topological strings-II, \arXiv hep-th/9812127, 1998.
[37] G\"ottsche, Lothar, A conjectural generating function for numbers of curves on surfaces, Comm. Math. Phys., 196, 3, 523-533 (1998) · Zbl 0934.14038
[38] Gra Gr\"afnitz, Tim, \emph Tropical correspondence for the log Calabi-Yau pair \((\mathbb P^2,E)\), \arXiv 2005.14018, 2020.
[39] Gross, Mark, Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics 114, xvi+317 pp. (2011), Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI · Zbl 1215.14061
[40] Gross, Mark; Hacking, Paul; Keel, Sean, Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. Hautes \'Etudes Sci., 122, 65-168 (2015) · Zbl 1351.14024
[41] GHKS18 M. Gross, P. Hacking and B. Siebert, \emph Theta functions on varieties with effective anti-canonical class, \arXiv 1601.07081.
[42] GHKS M. Gross, P. Hacking, S. Keel, B. Siebert: \emph Theta functions and K3 surfaces, in preparation.
[43] Gross, Mark; Pandharipande, Rahul; Siebert, Bernd, The tropical vertex, Duke Math. J., 153, 2, 297-362 (2010) · Zbl 1205.14069
[44] Gross, Mark; Siebert, Bernd, Mirror symmetry via logarithmic degeneration data. I, J. Differential Geom., 72, 2, 169-338 (2006) · Zbl 1107.14029
[45] Gross, Mark; Siebert, Bernd, From real affine geometry to complex geometry, Ann. of Math. (2), 174, 3, 1301-1428 (2011) · Zbl 1266.53074
[46] Gross, Mark; Siebert, Bernd, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc., 26, 2, 451-510 (2013) · Zbl 1281.14044
[47] Gross, Mark; Siebert, Bernd, Intrinsic mirror symmetry and punctured Gromov-Witten invariants. Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math. 97, 199-230 (2018), Amer. Math. Soc., Providence, RI · Zbl 1448.14039
[48] Harris, Joe, Galois groups of enumerative problems, Duke Math. J., 46, 4, 685-724 (1979) · Zbl 0433.14040
[49] HKP M. Huang, A. Klemm, and M. Poretschkin, \emph Refined stable pair invariants for E-, M- and \([p,q]\)-strings, \arXiv 1308.0619. · Zbl 1342.81436
[50] Joyce, Dominic; Song, Yinan, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc., 217, 1020, iv+199 pp. (2012) · Zbl 1259.14054
[51] Katz, Sheldon, Genus zero Gopakumar-Vafa invariants of contractible curves, J. Differential Geom., 79, 2, 185-195 (2008) · Zbl 1142.32011
[52] Katz, Sheldon; Klemm, Albrecht; Vafa, Cumrun, M-theory, topological strings and spinning black holes, Adv. Theor. Math. Phys., 3, 5, 1445-1537 (1999) · Zbl 0985.81081
[53] KL16 B. Kim, H. Lho, and H. Ruddat, \emph The degeneration formula for stable log maps, \arXiv 1803.04210.
[54] Klemm, A.; Maulik, D.; Pandharipande, R.; Scheidegger, E., Noether-Lefschetz theory and the Yau-Zaslow conjecture, J. Amer. Math. Soc., 23, 4, 1013-1040 (2010) · Zbl 1207.14057
[55] Knutsen, Andreas Leopold, Exceptional curves on del Pezzo surfaces, Math. Nachr., 256, 58-81 (2003) · Zbl 1048.14015
[56] Kontsevich, Maxim; Soibelman, Yan, Motivic Donaldson-Thomas invariants: summary of results. Mirror symmetry and tropical geometry, Contemp. Math. 527, 55-89 (2010), Amer. Math. Soc., Providence, RI · Zbl 1214.14014
[57] Kool, Martijn; Shende, Vivek; Thomas, Richard P., A short proof of the G\"ottsche conjecture, Geom. Topol., 15, 1, 397-406 (2011) · Zbl 1210.14011
[58] Kool, Martijn; Thomas, Richard, Reduced classes and curve counting on surfaces I: theory, Algebr. Geom., 1, 3, 334-383 (2014) · Zbl 1322.14085
[59] phys1 W. Lerche and P. Mayr, \emph On N=1 Mirror Symmetry for Open Type II Strings, \arXiv hep-th/0111113.
[60] phys2 W. Lerche, P. Mayr, and N. Warner, \emph Holomorphic N=1 Special Geometry of Open-Closed Type II Strings, \arXiv hep-th/0207259.
[61] Li, Jun, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom., 57, 3, 509-578 (2001) · Zbl 1076.14540
[62] Li02 J. Li, \emph A degeneration formula of Gromov-Witten invariants, J. Diff. Geom, vol. 60, (2002), pp. 199-293.
[63] Lin, Yu-Shen, Open Gromov-Witten invariants on elliptic K3 surfaces and wall-crossing, Comm. Math. Phys., 349, 1, 109-164 (2017) · Zbl 1359.14050
[64] Lin2 Y.-S. Lin, \emph Correspondence Theorem between Holomorphic Discs and Tropical Discs on K3 Surfaces, to appear in J. Diff. Geom.
[65] Li, Jun; Tzeng, Yu-jong, Universal polynomials for singular curves on surfaces, Compos. Math., 150, 7, 1169-1182 (2014) · Zbl 1307.14074
[66] Mandel, Travis; Ruddat, Helge, Descendant log Gromov-Witten invariants for toric varieties and tropical curves, Trans. Amer. Math. Soc., 373, 2, 1109-1152 (2020) · Zbl 1442.14166
[67] Manin, Yu. I., Generating functions in algebraic geometry and sums over trees. The moduli space of curves, Texel Island, 1994, Progr. Math. 129, 401-417 (1995), Birkh\"auser Boston, Boston, MA · Zbl 0871.14022
[68] Maulik, Davesh; Pandharipande, Rahul, Gromov-Witten theory and Noether-Lefschetz theory. A celebration of algebraic geometry, Clay Math. Proc. 18, 469-507 (2013), Amer. Math. Soc., Providence, RI · Zbl 1317.14126
[69] Maulik, D.; Pandharipande, R.; Thomas, R. P., Curves on \(K3\) surfaces and modular forms, J. Topol., 3, 4, 937-996 (2010) · Zbl 1207.14058
[70] Mumford, David, Algebraic geometry. I, Grundlehren der Mathematischen Wissenschaften, No. 221, x+186 pp. (1976), Springer-Verlag, Berlin-New York · Zbl 0821.14001
[71] NR N. Nabijou and D. Ranganathan, \emph Gromov-Witten theory with maximal contacts, \arXiv 1908.04706.
[72] Pandharipande, R., Hodge integrals and degenerate contributions, Comm. Math. Phys., 208, 2, 489-506 (1999) · Zbl 0953.14036
[73] Pandharipande, R., Three questions in Gromov-Witten theory. Proceedings of the International Congress of Mathematicians, Vol. II, Beijing, 2002, 503-512 (2002), Higher Ed. Press, Beijing · Zbl 1047.14043
[74] Pandharipande, R.; Thomas, R. P., The Katz-Klemm-Vafa conjecture for \(K3\) surfaces, Forum Math. Pi, 4, e4, 111 pp. (2016) · Zbl 1401.14223
[75] Reineke, Markus, Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants, Compos. Math., 147, 3, 943-964 (2011) · Zbl 1266.16013
[76] Reineke, Markus, Degenerate cohomological Hall algebra and quantized Donaldson-Thomas invariants for \(m\)-loop quivers, Doc. Math., 17, 1-22 (2012) · Zbl 1280.16018
[77] Shende, Vivek, Hilbert schemes of points on a locally planar curve and the Severi strata of its versal deformation, Compos. Math., 148, 2, 531-547 (2012) · Zbl 1312.14015
[78] Stienstra, Jan, Mahler measure variations, Eisenstein series and instanton expansions. Mirror symmetry. V, AMS/IP Stud. Adv. Math. 38, 139-150 (2006), Amer. Math. Soc., Providence, RI · Zbl 1118.11047
[79] Strominger, Andrew; Yau, Shing-Tung; Zaslow, Eric, Mirror symmetry is \(T\)-duality, Nuclear Phys. B, 479, 1-2, 243-259 (1996) · Zbl 0896.14024
[80] tak_compl N. Takahashi, \emph Curves in the complement of a smooth plane cubic whose normalizations are \(\mathbb A^1\), \arXiv alg-geom/9605007.
[81] tak_mult N. Takahashi, \emph On the multiplicity of reducible relative stable morphisms, \arXiv 1711.08173.
[82] Takahashi, Nobuyoshi, Log mirror symmetry and local mirror symmetry, Comm. Math. Phys., 220, 2, 293-299 (2001) · Zbl 1066.14048
[83] Testa, Damiano; V\'arilly-Alvarado, Anthony; Velasco, Mauricio, Cox rings of degree one del Pezzo surfaces, Algebra Number Theory, 3, 7, 729-761 (2009) · Zbl 1191.14047
[84] TY H.-H. Tseng and F. You, \emph A mirror theorem for multi-root stacks and applications, \arXiv 2006.08991.
[85] Tzeng, Yu-Jong, A proof of the G\"ottsche-Yau-Zaslow formula, J. Differential Geom., 90, 3, 439-472 (2012) · Zbl 1253.14054
[86] Tzengtang Y. Tzeng, \emph Enumeration of singular varieties with tangency conditions, \arXiv 1703.02513.
[87] Voisin, Claire, A mathematical proof of a formula of Aspinwall and Morrison, Compositio Math., 104, 2, 135-151 (1996) · Zbl 0951.14025
[88] Wise, Jonathan, Uniqueness of minimal morphisms of logarithmic schemes, Algebr. Geom., 6, 1, 50-63 (2019) · Zbl 1441.14007
[89] Yau, Shing-Tung; Zaslow, Eric, BPS states, string duality, and nodal curves on \(K3\), Nuclear Phys. B, 471, 3, 503-512 (1996) · Zbl 0964.81521
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.