×

zbMATH — the first resource for mathematics

Geometric deep learning for computational mechanics. I: Anisotropic hyperelasticity. (English) Zbl 07337944
Summary: We present a machine learning approach that integrates geometric deep learning and Sobolev training to generate a family of finite strain anisotropic hyperelastic models that predict the homogenized responses of polycrystals previously unseen during the training. While hand-crafted hyperelasticity models often incorporate homogenized measures of microstructural attributes, such as the porosity or the averaged orientation of constituents, these measures may not adequately represent the topological structures of the attributes. We fill this knowledge gap by introducing the concept of the weighted graph as a new high-dimensional descriptor that represents topological information, such as the connectivity of anisotropic grains in an assemble. By leveraging a graph convolutional deep neural network in a hybrid machine learning architecture previously used in [A. L. Frankel et al., “Predicting the mechanical response of oligocrystals with deep learning”, Comput. Mater. Sci. 169, Article ID 109099, 19 p. (2019; doi:10.1016/j.commatsci.2019.109099)], the artificial intelligence extracts low-dimensional features from the weighted graphs and subsequently learns the influence of these low-dimensional features on the resultant stored elastic energy functionals. To ensure smoothness and prevent unintentionally generating a non-convex stored energy functional, we adopt the Sobolev training method for neural networks such that a stress measure is obtained implicitly by taking directional derivatives of the trained energy functional. Results from numerical experiments suggest that Sobolev training is capable of generating a hyperelastic energy functional that predicts both the elastic energy and stress measures more accurately than the classical training that minimizes \(L_2\) norms. Verification exercises against unseen benchmark FFT simulations and phase-field fracture simulations that employ the geometric learning generated elastic energy functional are conducted to demonstrate the quality of the predictions.
MSC:
74 Mechanics of deformable solids
68 Computer science
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gurson, Arthur L., Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 1, 2-15 (1977)
[2] Needleman, Alan, A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 54, 3, 525-531 (1987) · Zbl 0626.73010
[3] Zhang, Z. L.; Thaulow, C.; Ødegard, J., A complete Gurson model approach for ductile fracture, Eng. Fract. Mech., 67, 2, 155-168 (2000)
[4] Nahshon, Ken; Hutchinson, J. W., Modification of the Gurson model for shear failure, Eur. J. Mech. A Solids, 27, 1, 1-17 (2008) · Zbl 1129.74041
[5] Nielsen, Kim Lau; Tvergaard, Viggo, Ductile shear failure or plug failure of spot welds modelled by modified Gurson model, Eng. Fract. Mech., 77, 7, 1031-1047 (2010)
[6] Ma, Ran; Sun, WaiChing, Computational thermomechanics for crystalline rock. part ii: chemo-damage-plasticity and healing in strongly anisotropic polycrystals, Computer Methods in Applied Mechanics and Engineering, 369, 113184 (2020)
[7] Schofield, Andrew; Wroth, Peter, Critical State Soil Mechanics, Vol. 310 (1968), McGraw-Hill London
[8] Borja, Ronaldo I.; Lee, Seung R., Cam-clay plasticity, part 1: implicit integration of elasto-plastic constitutive relations, Comput. Methods Appl. Mech. Engrg., 78, 1, 49-72 (1990) · Zbl 0718.73034
[9] Manzari, Majid T.; Dafalias, Yannis F., A critical state two-surface plasticity model for sands, Geotechnique, 47, 2, 255-272 (1997)
[10] Sun, WaiChing, A unified method to predict diffuse and localized instabilities in sands, Geomech. Geoeng., 8, 2, 65-75 (2013)
[11] Liu, Yang; Sun, WaiChing; Fish, Jacob, Determining material parameters for critical state plasticity models based on multilevel extended digital database, J. Appl. Mech., 83, 1, Article 011003 pp. (2016)
[12] Wang, Kun; Sun, WaiChing; Salager, Simon; Na, SeonHong; Khaddour, Ghonwa, Identifying material parameters for a micro-polar plasticity model via X-ray micro-computed tomographic (CT) images: lessons learned from the curve-fitting exercises, Int. J. Multiscale Comput. Eng., 14, 4 (2016)
[13] Anand, L.; Kothari, M., A computational procedure for rate-independent crystal plasticity, J. Mech. Phys. Solids, 44, 4, 525-558 (1996) · Zbl 1054.74549
[14] Na, SeonHong; Sun, WaiChing, Computational thermomechanics of crystalline rock, Part I: A combined multi-phase-field/crystal plasticity approach for single crystal simulations, Comput. Methods Appl. Mech. Engrg., 338, 657-691 (2018) · Zbl 1440.74222
[15] Ma, Ran; Truster, Timothy J.; Puplampu, Stephen B.; Penumadu, Dayakar, Investigating mechanical degradation due to fire exposure of aluminum alloy 5083 using crystal plasticity finite element method, Int. J. Solids Struct., 134, 151-160 (2018)
[16] Jerphagnon, Jean; Chemla, Daniel; Bonneville, R., The description of the physical properties of condensed matter using irreducible tensors, Adv. Phys., 27, 4, 609-650 (1978)
[17] Sun, WaiChing; Mota, Alejandro, A multiscale overlapped coupling formulation for large-deformation strain localization, Computational Mechanics, 54, 803-820 (2014) · Zbl 1311.74002
[18] Kuhn, Matthew R.; Sun, WaiChing; Wang, Qi, Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability, Acta Geotech., 10, 4, 399-419 (2015)
[19] Liu, Chuanqi; Sun, WaiChing, Ils-mpm: an implicit level-set-based material point method for frictional particulate contact mechanics of deformable particles, Comput. Methods Appl. Mech. Engrg., 369, 113168 (2020)
[20] Kirchdoerfer, Trenton; Ortiz, Michael, Data-driven computational mechanics, Comput. Methods Appl. Mech. Engrg., 304, 81-101 (2016) · Zbl 1425.74503
[21] Eggersmann, Robert; Kirchdoerfer, Trenton; Reese, Stefanie; Stainier, Laurent; Ortiz, Michael, Model-free data-driven inelasticity, Comput. Methods Appl. Mech. Engrg., 350, 81-99 (2019) · Zbl 1441.74048
[22] He, Qizhi; Chen, Jiun-Shyan, A physics-constrained data-driven approach based on locally convex reconstruction for noisy database (2019), arXiv preprint arXiv:1907.12651 · Zbl 1436.62725
[23] Stoffel, M.; Bamer, F.; Markert, B., Stability of feed forward artificial neural networks versus nonlinear structural models in high speed deformations: A critical comparison, Arch. Mech., 71, 2 (2019) · Zbl 1425.74504
[24] Bessa, M. A.; Bostanabad, R.; Liu, Z.; Hu, A.; Apley, Daniel W.; Brinson, C.; Chen, Wei; Liu, Wing Kam, A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality, Comput. Methods Appl. Mech. Engrg., 320, 633-667 (2017) · Zbl 1439.74014
[25] Liu, Zeliang; Kafka, OrionL; Yu, Cheng; Liu, Wing Kam, Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity, (Advances in Computational Plasticity (2018), Springer), 221-242
[26] Lubbers, Nicholas; Lookman, Turab; Barros, Kipton, Inferring low-dimensional microstructure representations using convolutional neural networks, Phys. Rev. E, 96, 5, Article 052111 pp. (2017), 2470-0053
[27] Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E., ImageNet classification with deep convolutional neural networks, (Pereira, F.; Burges, C. J.C.; Bottou, L.; Weinberger, K. Q., Advances in Neural Information Processing Systems, Vol. 25 (2012), Curran Associates, Inc.), 1097-1105
[28] Xu, Li; Ren, Jimmy S. J.; Liu, Ce; Jia, Jiaya, Deep convolutional neural network for image deconvolution, (Advances in Neural Information Processing Systems (2014)), 1790-1798
[29] Jones, Reese E.; Templeton, Jeremy A.; Sanders, Clay M.; Ostien, Jakob T., Machine learning models of plastic flow based on representation theory (2018), arXiv preprint arXiv:1809.00267
[30] Frankel, A. L.; Jones, R. E.; Alleman, C.; Templeton, J. A., Predicting the mechanical response of oligocrystals with deep learning, Comput. Mater. Sci., 169, Article 109099 pp. (2019)
[31] Satake, Masao, A discrete-mechanical approach to granular materials, Internat. J. Engrg. Sci., 30, 10, 1525-1533 (1992)
[32] Sun, WaiChing; Kuhn, Matthew R.; Rudnicki, John W., A multiscale dem-lbm analysis on permeability evolutions inside a dilatant shear band, Acta Geotech., 8, 5, 465-480 (2013)
[33] Tordesillas, Antoinette; Pucilowski, Sebastian; Walker, DavidM; Peters, John F.; Walizer, Laura E., Micromechanics of vortices in granular media: connection to shear bands and implications for continuum modelling of failure in geomaterials, Int. J. Numer. Anal. Methods Geomech., 38, 12, 1247-1275 (2014)
[34] Wang, Kun; Sun, WaiChing, Meta-modeling game for deriving theory-consistent, microstructure-based traction-separation laws via deep reinforcement learning, Comput. Methods Appl. Mech. Engrg., 346, 216-241a (2019) · Zbl 1440.74016
[35] Wang, Kun; Sun, WaiChing, An updated lagrangian lbm-dem-fem coupling model for dual-permeability fissured porous media with embedded discontinuities, Comput. Methods Appl. Mech. Engrg., 344, 276-305b (2019) · Zbl 1440.74449
[36] Altae-Tran, Han; Ramsundar, Bharath; Pappu, Aneesh S.; Pande, Vijay, Low data drug discovery with one-shot learning, ACS Cent. Sci., 3, 4, 283-293 (2017)
[37] Xie, Tian; Grossman, Jeffrey C., Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties, Phys. Rev. Lett., 120, 14, Article 145301 pp. (2018)
[38] Bengio, Yoshua; Courville, Aaron; Vincent, Pascal, Representation learning: A review and new perspectives, IEEE Trans. Pattern Anal. Mach. Intell., 35, 8, 1798-1828 (2013)
[39] Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner, Markus; Monfardini, Gabriele, The graph neural network model, IEEE Trans. Neural Netw., 20, 1, 61-80 (2008)
[40] Mikolov, Tomas; Sutskever, Ilya; Chen, Kai; Corrado, Greg S.; Dean, Jeff, Distributed representations of words and phrases and their compositionality, (Burges, C. J.C.; Bottou, L.; Welling, M.; Ghahramani, Z.; Weinberger, K. Q., Advances in Neural Information Processing Systems, Vol. 26 (2013), Curran Associates, Inc.), 3111-3119
[41] Grover, Aditya; Leskovec, Jure, Node2vec: Scalable feature learning for networks (2016), arXiv:1607.00653 [cs, stat]
[42] Perozzi, Bryan; Al-Rfou, Rami; Skiena, Steven, DeepWalk: Online learning of social representations, (Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’14 (2014)), 701-710
[43] Narayanan, Annamalai; Chandramohan, Mahinthan; Venkatesan, Rajasekar; Chen, Lihui; Liu, Yang; Jaiswal, Shantanu, Graph2vec: Learning Distributed Representations of Graphs (2017), arXiv:1707.05005 [cs]
[44] Ranzato, Marc’Aurelio; Huang, FuJie; Boureau, Y.-Lan; LeCun, Yann, Unsupervised learning of invariant feature hierarchies with applications to object recognition, (2007 IEEE Conference on Computer Vision and Pattern Recognition (2007), IEEE), 1-8
[45] Vincent, Pascal; Larochelle, Hugo; Bengio, Yoshua; Manzagol, Pierre-Antoine, Extracting and composing robust features with denoising autoencoders, (Proceedings of the 25th International Conference on Machine Learning, ICML ’08 (2008), ACM: ACM New York, NY, USA), 1096-1103
[46] Jaquet, Clara; Andó, Edward; Viggiani, Gioacchino; Talbot, Hugues, Estimation of separating planes between touching 3d objects using power watershed, (International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing (2013), Springer), 452-463 · Zbl 1382.68300
[47] Quey, R.; Dawson, P. R.; Barbe, F., Large-scale 3d random polycrystals for the finite element method: Generation, meshing and remeshing, Comput. Methods Appl. Mech. Engrg., 200, 17, 1729-1745 (2011) · Zbl 1228.74093
[48] Groeber, Michael A.; Jackson, Michael A., Dream. 3d: a digital representation environment for the analysis of microstructure in 3d, Integr. Mater. Manuf. Innov., 3, 1, 5 (2014)
[49] Drucker, Harris; Burges, ChristopherJ. C.; Kaufman, Linda; Smola, Alex J.; Vapnik, Vladimir, Support vector regression machines, (Advances in Neural Information Processing Systems (1997)), 155-161
[50] Quiñonero-Candela, Joaquin; Rasmussen, Carl Edward, A unifying view of sparse approximate gaussian process regression, J. Mach. Learn. Res., 6, Dec, 1939-1959 (2005) · Zbl 1222.68282
[51] Gardner, Jacob R.; Kusner, Matt J.; Xu, Zhixiang Eddie; Weinberger, Kilian Q.; Cunningham, John P., Bayesian optimization with inequality constraints, (ICML (2014)), 937-945
[52] Wang, Kun; Sun, WaiChing, A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning, Comput. Methods Appl. Mech. Engrg., 334, 337-380 (2018) · Zbl 1440.74130
[53] Wu, Zonghan; Pan, Shirui; Chen, Fengwen; Long, Guodong; Zhang, Chengqi; Yu, Philip S., Comprehensive survey on graph neural networks (2019), arXiv: [cs, stat], arXiv:1901.00596
[54] Defferrard, Michaël; Bresson, Xavier; Vandergheynst, Pierre, Convolutional neural networks on graphs with fast localized spectral filtering, (Lee, D. D.; Sugiyama, M.; Luxburg, U. V.; Guyon, I.; Garnett, R., Advances in Neural Information Processing Systems, Vol. 29 (2016), Curran Associates, Inc.), 3844-3852
[55] Kipf, Thomas N.; Welling, Max, Semi-Supervised Classification with Graph Convolutional Networks (2017), arXiv:1609.02907 [cs, stat]
[56] Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P., Gradient-based learning applied to document recognition, Proc. IEEE, 86, 11, 2278-2324 (1998), 1558-2256
[57] Simonovsky, Martin; Komodakis, Nikos, Dynamic edge-conditioned filters in convolutional neural networks on graphs (2017)
[58] Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick, Molecular graph convolutions: moving beyond fingerprints, J. Comput. Aided Mol. Des., 30, 8, 595-608 (2016)
[59] Chollet, François, Keras (2015), https://keras.io
[60] Grattarola, Daniele, Spektral (2019), URL https://danielegrattarola.github.io/spektral/
[61] Srivastava, Nitish; Hinton, Geoffrey; Krizhevsky, Alex; Sutskever, Ilya; Salakhutdinov, Ruslan, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15, 1929-1958 (2014) · Zbl 1318.68153
[62] Ghaboussi, J.; Garrett, J. H.; Wu, Xiping, Knowledge-based modeling of material behavior with neural networks, J. Eng. Mech., 117, 1, 132-153 (1991)
[63] Lefik, M.; Boso, D. P.; Schrefler, B. A., Artificial neural networks in numerical modelling of composites, Comput. Methods Appl. Mech. Engrg., 198, 21-26, 1785-1804 (2009) · Zbl 1227.74052
[64] Liu, Zeliang; Wu, C. T.; Koishi, M., A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 345, 1138-1168 (2019) · Zbl 1440.74340
[65] Lu, Xiaoxin; Giovanis, DimitrisG; Yvonnet, Julien; Papadopoulos, Vissarion; Detrez, Fabrice; Bai, Jinbo, A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites, Comput. Mech., 64, 2, 307-321 (2019) · Zbl 07095666
[66] Huang, Daniel Z.; Xu, Kailai; Farhat, Charbel; Darve, Eric, Predictive Modeling with Learned Constitutive Laws from Indirect Observations (2019), arXiv preprint arXiv:1905.12530 · Zbl 1437.65192
[67] Zytynski, M.; Randolph, M. F.; Nova, R.; Wroth, C. P., On modelling the unloading-reloading behaviour of soils, Int. J. Numer. Anal. Methods Geomech., 2, 1, 87-93 (1978)
[68] Borja, Ronaldo I.; Tamagnini, Claudio; Amorosi, Angelo, Coupling plasticity and energy-conserving elasticity models for clays, J. Geotech. Geoenviron. Eng., 123, 10, 948-957 (1997)
[69] Holzapfel, Gerhard A.; Gasser, Thomas C.; Ogden, Ray W., A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast. Phys. Sci. Solids, 61, 1, 1-48 (2000) · Zbl 1023.74033
[70] Le, B. A.; Yvonnet, Julien; He, Q.-C., Computational homogenization of nonlinear elastic materials using neural networks, Internat. J. Numer. Methods Engrg., 104, 12, 1061-1084 (2015) · Zbl 1352.74266
[71] Teichert, G. H.; Natarajan, A. R.; Van der Ven, A.; Garikipati, K., Machine learning materials physics: Integrable deep neural networks enable scale bridging by learning free energy functions, Comput. Methods Appl. Mech. Engrg., 353, 201-216 (2019) · Zbl 1441.82021
[72] Teichert, Gregory H.; Garikipati, Krishna, Machine learning materials physics: Surrogate optimization and multi-fidelity algorithms predict precipitate morphology in an alternative to phase field dynamics, Comput. Methods Appl. Mech. Engrg., 344, 666-693 (2019) · Zbl 1440.74276
[73] Czarnecki, Wojciech M.; Osindero, Simon; Jaderberg, Max; Swirszcz, Grzegorz; Pascanu, Razvan, Sobolev training for neural networks, (Advances in Neural Information Processing Systems (2017)), 4278-4287
[74] Sonoda, Sho; Murata, Noboru, Neural network with unbounded activation functions is universal approximator, Appl. Comput. Harmon. Anal., 43, 2, 233-268 (2017) · Zbl 1420.68177
[75] Heider, Yousef; Wang, Kun; Sun, WaiChing, So(3)-invariance of informed-graph-based deep neural network for anisotropic elastoplastic materials, Comput. Methods Appl. Mech. Engrg., 363, Article 112875 pp. (2020) · Zbl 1436.74012
[76] Borja, Ronaldo I., Plasticity (2013), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg · Zbl 1279.74003
[77] Tamura, Kenichi; Gallagher, Marcus, Quantitative measure of nonconvexity for black-box continuous functions, Inform. Sci., 476, 64-82 (2019)
[78] Ma, Ran; Sun, WaiChing, Fft-based solver for higher-order and multi-phase-field fracture models applied to strongly anisotropic brittle materials and poly-crystals, Comput. Methods Appl. Mech. Engrg. (2019), tentatively accepted. · Zbl 1439.74364
[79] Fung, Yuan-cheng, Foundations of Solid Mechanics (1965)
[80] Ateshian, Gerard A.; Costa, Kevin D., A frame-invariant formulation of fung elasticity, J. Biomech., 42, 6, 781-785 (2009)
[81] Bachmann, F.; Hielscher, Ralf; Schaeben, Helmut, Texture Analysis with MTEX - Free and Open Source Software Toolbox (2010)
[82] Kendall, Maurice George, The advanced theory of statistics, (The Advanced Theory of Statistics (1946)) · Zbl 0063.03217
[83] Gentle, J. E., Computational Statistics (2009), Springer · Zbl 1179.62001
[84] Huynh, Du Q., Metrics for 3d rotations: Comparison and analysis, J. Math. Imaging Vision, 35, 2, 155-164 (2009)
[85] Roscoe, K. H.; Burland, J. B., On the generalized stress-strain behaviour of wet clay (1968) · Zbl 0233.73047
[86] Houlsby, G. T., The use of a variable shear modulus in elastic-plastic models for clays, Comput. Geotech., 1, 1, 3-13 (1985)
[87] Borja, Ronaldo I.; Lin, Chao-Hua; Montáns, Francisco J., Cam-clay plasticity, part iv: Implicit integration of anisotropic bounding surface model with nonlinear hyperelasticity and ellipsoidal loading function, Comput. Methods Appl. Mech. Engrg., 190, 26-27, 3293-3323 (2001) · Zbl 1059.74038
[88] Bengio, Yoshua; Grandvalet, Yves, No unbiased estimator of the variance of k-fold cross-validation, J. Mach. Learn. Res., 5, Sep, 1089-1105 (2004) · Zbl 1222.68145
[89] Kalthoff, J. F.; Winkler, S., Failure mode transition at high rates of shear loading. DGM informationsgesellschaft mbH, Impact Loading Dyn. Behav. Mater., 1, 185-195 (1988)
[90] Kalthoff, Joerg F., Modes of dynamic shear failure in solids, Int. J. Fract., 101, 1, 1-31 (2000)
[91] Simo, Juan C.; Ju, J. W., Strain-and stress-based continuum damage models—i. formulation, Int. J. Solids Struct., 23, 7, 821-840 (1987) · Zbl 0634.73106
[92] Kochmann, Julian; Ehle, Lisa; Wulfinghoff, Stephan; Mayer, Joachim; Svendsen, Bob; Reese, Stefanie, Efficient multiscale fe-fft-based modeling and simulation of macroscopic deformation processes with non-linear heterogeneous microstructures, (Multiscale Modeling of Heterogeneous Structures (2018), Springer), 129-146 · Zbl 1446.74103
[93] Bourdin, Blaise; Francfort, Gilles A.; Marigo, Jean-Jacques, The variational approach to fracture, J. Elasticity, 91, 1-3, 5-148 (2008) · Zbl 1176.74018
[94] Borden, Michael J.; Verhoosel, Clemens V.; Scott, Michael A.; Hughes, Thomas J. R.; Landis, Chad M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217, 77-95a (2012) · Zbl 1253.74089
[95] Miehe, Christian; Hofacker, Martina; Welschinger, Fabian, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45, 2765-2778b (2010) · Zbl 1231.74022
[96] de Souza Neto, Eduardo A.; Peric, Djordje; Owen, David R. J., Computational Methods for Plasticity: Theory and Applications (2011), John Wiley & Sons
[97] Belytschko, Ted; Chen, Hao; Xu, Jingxiao; Zi, Goangseup, Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, Internat. J. Numer. Methods Engrg., 58, 12, 1873-1905 (2003) · Zbl 1032.74662
[98] Song, Jeong-Hoon; Wang, Hongwu; Belytschko, Ted, A comparative study on finite element methods for dynamic fracture, Comput. Mech., 42, 2, 239-250 (2008) · Zbl 1160.74048
[99] Wei, Haoyan; Chen, Jiun-Shyan, A damage particle method for smeared modeling of brittle fracture, Int. J. Multiscale Comput. Eng., 16, 4 (2018)
[100] Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren; Liu, Stanley, Concrete mathematics: a foundation for computer science, Comput. Phys., 3, 5, 106-107 (1989) · Zbl 0668.00003
[101] West, Douglas Brent, Introduction to Graph Theory, Vol. 2 (2001), Prentice hall Upper Saddle River
[102] Bang-Jensen, Jørgen; Gutin, Gregory Z., Digraphs: Theory, Algorithms and Applications (2008), Springer Science & Business Media · Zbl 1210.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.