×

zbMATH — the first resource for mathematics

From diffuse damage to discrete crack: a coupled failure model for multi-stage progressive damage of composites. (English) Zbl 07340364
Summary: The multi-stage failure process and the coupled failure mechanisms have posed great challenges to damage analyses of fibre-reinforced composite laminates. In this study, a coupled failure model (CFM) is proposed which incorporates both smeared crack model (SCM) and discrete crack model (DCM) through an energy-consistent thermodynamic framework. While SCM is well suited for describing crack nucleation and diffuse damage at initial failure stage, DCM offers a great tool to model the subsequent crack growth and its interaction with other failure modes. A hybrid SCM/DCM formulation is developed for CFM, so that the progressive failure process from diffuse damage to propagation of major cracks is characterized. Furthermore, inherent limitations of each standalone model, such as convergence difficulty and computational inefficiency, are effectively resolved by the proposed approach. Performance of CFM is demonstrated through a few numerical examples, including element validation, Off-axis tensile and open-hole tension tests of composite laminates.
MSC:
74 Mechanics of deformable solids
80 Classical thermodynamics, heat transfer
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hallett, S. R.; Green, B. G.; Jiang, W. G.; Wisnom, M. R., An experimental and numerical investigation into the damage mechanisms in notched composites, Composites A, 40, 5, 613-624 (2009)
[2] Tong, J.; Guild, F.; Ogin, S.; Smith, P., On matrix crack growth in quasi-isotropic laminates—I. Experimental investigation, Compos. Sci. Technol., 57, 11, 1527-1535 (1997)
[3] Berthelot, J. M., Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: static and fatigue loading, Appl. Mech. Rev., 56, 1, 111-147 (2003)
[4] Wisnom, M. R.; Khan, B.; Hallett, S. R., Size effects in unnotched tensile strength of unidirectional and quasi-isotropic carbon/epoxy composites, Compos. Struct., 84, 1, 21-28 (2008)
[5] Hallett, S. R.; Jiang, W. G.; Khan, B.; Wisnom, M. R., Modelling the interaction between matrix cracks and delamination damage in scaled quasi-isotropic specimens, Compos. Sci. Technol., 68, 1, 80-89 (2008)
[6] Zubillaga, L.; Turon, A.; Renart, J.; Costa, J.; Linde, P., An experimental study on matrix crack induced delamination in composite laminates, Compos. Struct., 127, 10-17 (2015)
[7] Baz̆ant, Z. P., Mechanics of distributed cracking, Appl. Mech. Rev., 39, 5, 675-705 (1986)
[8] Mazars, J.; Cabot, G. P., Continuum damage theory-application to concrete, J. Eng. Mech., 115, 2, 345-365 (1989)
[9] Ladevèze, P.; LeDantec, E., Damage modelling of the elementary ply for laminated composites, Compos. Sci. Technol., 43, 3, 257-267 (1992)
[10] Ladevèze, P., A damage computational method for composite structures, Comput. Struct., 44, 1, 79-87 (1992)
[11] Matzenmiller, A.; Lubliner, J.; Taylor, R. L., A constitutive model for anisotropic damage in fiber-composites, Mech. Mater., 20, 2, 125-152 (1995)
[12] Qing, H.; Mishnaevsky, L., 3d constitutive model of anisotropic damage for unidirectional ply based on physical failure mechanisms, Comput. Mater. Sci., 50, 2, 479-486 (2010)
[13] Pinho, S.; Iannucci, L.; Robinson, P., Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part i: Development, Composites A, 37, 1, 63-73 (2006)
[14] Pinho, S.; Iannucci, L.; Robinson, P., Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: Fe implementation, Composites A, 37, 5, 766-777 (2006)
[15] Maimí, P.; Camanho, P. P.; Mayugo, J. A.; Dávila, C. G., A continuum damage model for composite laminates: Part i – constitutive model, Mech. Mater., 39, 10, 897-908 (2007)
[16] Maimí, P.; Camanho, P. P.; Mayugo, J. A.; Dávila, C. G., A continuum damage model for composite laminates: Part II - computational implementation and validation, Mech. Mater., 39, 10, 909-919 (2007)
[17] Pijaudier-Cabot, G.; Baz̆ant, Z. P., Nonlocal damage theory, J. Eng. Mech., 113, 10, 1512-1533 (1987)
[18] Baz̆ant, Z. P.; Pijaudier-Cabot, G., Nonlocal continuum damage, localization instability and convergence, J. Appl. Mech., 55, 2, 287-293 (1988) · Zbl 0663.73075
[19] Baz̆ant, Z. P.; Pijaudier-Cabot, G., Measurement of characteristic length of nonlocal continuum, J. Eng. Mech., 115, 4, 755-767 (1989)
[20] Bažant, Z. P.; Oh, B. H., Crack band theory for fracture of concrete, Matér. Constr., 16, 3, 155-177 (1983)
[21] Oliver, J., A consistent characteristic length for smeared cracking models, Internat. J. Numer. Methods Engrg., 28, 2, 461-474 (1989) · Zbl 0676.73066
[22] Forghani, A.; Vaziri, R., Computational modeling of damage development in composite laminates subjected to transverse dynamic loading, J. Appl. Mech., 76, 5, Article 051304 pp. (2009)
[23] Forghani, A.; Zobeiry, N.; Poursartip, A.; Vaziri, R., A structural modelling framework for prediction of damage development and failure of composite laminates, J. Compos. Mater., 47, 20-21, 2553-2573 (2013)
[24] Reiner, J.; Feser, T.; Schueler, D.; Waimer, M.; Vaziri, R., Comparison of two progressive damage models for studying the notched behavior of composite laminates under tension, Compos. Struct., 207, 385-396 (2019)
[25] Zobeiry, N.; Forghani, A.; McGregor, C.; McClennan, S.; Vaziri, R.; Poursartip, A., Effective calibration and validation of a nonlocal continuum damage model for laminated composites, Compos. Struct., 173, 188-195 (2017)
[26] Lapczyk, I.; Hurtado, J. A., Progressive damage modeling in fiber-reinforced materials, Composites A, 38, 11, 2333-2341 (2007), CompTest 2006
[27] Camanho, P.; Maimí, P.; Dávila, C. G., Prediction of size effects in notched laminates using continuum damage mechanics, Compos. Sci. Technol., 67, 13, 2715-2727 (2007)
[28] Hakim, V.; Karma, A., Laws of crack motion and phase-field models of fracture, J. Mech. Phys. Solids, 57, 2, 342-368 (2009) · Zbl 1421.74089
[29] Carollo, V.; Reinoso, J.; Paggi, M., A 3d finite strain model for intralayer and interlayer crack simulation coupling the phase field approach and cohesive zone model, Compos. Struct., 182, 636-651 (2017)
[30] Quintanas-Corominas, A.; Reinoso, J.; Casoni, E.; Turon, A.; Mayugo, J., A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials, Compos. Struct., 220, 899-911 (2019)
[31] Zhang, P.; Hu, X.; Yang, S.; Yao, W., Modelling progressive failure in multi-phase materials using a phase field method, Eng. Fract. Mech., 209, 105-124 (2019)
[32] Patil, R.; Mishra, B.; Singh, I.; Bui, T., A new multiscale phase field method to simulate failure in composites, Adv. Eng. Softw., 126, 9-33 (2018)
[33] Moës, N.; Stolz, C.; Bernard, P.-E.; Chevaugeon, N., A level set based model for damage growth: The thick level set approach, Internat. J. Numer. Methods Engrg., 86, 3, 358-380 (2011) · Zbl 1235.74302
[34] van der Meer, F. P.; Sluys, L., The thick level set method: Sliding deformations and damage initiation, Comput. Methods Appl. Mech. Engrg., 285, 64-82 (2015) · Zbl 1423.74066
[35] Griffith, A. A.; Taylor, G. I., VI. The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. A, 221, 582-593, 163-198 (1921)
[36] Rice, J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35, 2, 379-386 (1968)
[37] Dugdale, D., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 2, 100-104 (1960)
[38] Barenblatt, G., The mathematical theory of equilibrium cracks in brittle fracture, (Dryden, H.; von Kármán, T.; Kuerti, G.; van den Dungen, F.; Howarth, L., Advances in Applied Mechanics, vol. 7 (1962), Elsevier), 55-129
[39] Mi, Y.; Crisfield, M. A.; Davies, G. A.O.; Hellweg, H. B., Progressive delamination using interface elements, J. Compos. Mater., 32, 14, 1246-1272 (1998)
[40] Turon, A.; Camanho, P.; Costa, J.; Dávila, C., A damage model for the simulation of delamination in advanced composites under variable-mode loading, Mech. Mater., 38, 11, 1072-1089 (2006)
[41] Park, K.; Paulino, G. H., Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces, Appl. Mech. Rev., 64, 6, 060802-060802-20 (2011)
[42] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 1, 131-150 (1999) · Zbl 0955.74066
[43] Areias, P. M.A.; Song, J. H.; Belytschko, T., Analysis of fracture in thin shells by overlapping paired elements, Comput. Methods Appl. Mech. Engrg., 195, 41, 5343-5360 (2006), John H. Argyris Memorial Issue. Part II · Zbl 1120.74048
[44] Song, J.-H.; Areias, P. M.A.; Belytschko, T., A method for dynamic crack and shear band propagation with phantom nodes, Internat. J. Numer. Methods Engrg., 67, 6, 868-893 (2006) · Zbl 1113.74078
[45] van der Meer, F. P.; Sluys, L. J., A phantom node formulation with mixed mode cohesive law for splitting in laminates, Int. J. Fract., 158, 2, 107 (2009) · Zbl 1400.74106
[46] Ling, D.; Yang, Q.; Cox, B., An augmented finite element method for modeling arbitrary discontinuities in composite materials, Int. J. Fract., 156, 1, 53-73 (2009) · Zbl 1273.74540
[47] Fang, X. J.; Yang, Q. D.; Cox, B. N.; Zhou, Z. Q., An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials, Internat. J. Numer. Methods Engrg., 88, 9, 841-861 (2011) · Zbl 1242.74111
[48] Fang, X. J.; Zhou, Z. Q.; Cox, B. N.; Yang, Q. D., High-fidelity simulations of multiple fracture processes in a laminated composite in tension, J. Mech. Phys. Solids, 59, 7, 1355-1373 (2011) · Zbl 1270.74173
[49] Chen, B. Y.; Pinho, S. T.; Carvalho, N. V.D.; Baiz, P. M.; Tay, T. E., A floating node method for the modelling of discontinuities in composites, Eng. Fract. Mech., 127, 104-134 (2014)
[50] Chen, B. Y.; Tay, T. E.; Pinho, S. T.; Tan, V. B.C., Modelling the tensile failure of composites with the floating node method, Comput. Methods Appl. Mech. Engrg., 308, 414-442 (2016) · Zbl 1439.74092
[51] Chen, B. Y.; Tay, T. E.; Pinho, S. T.; Tan, V. B.C., Modelling delamination migration in angle-ply laminates, Compos. Sci. Technol., 142, 145-155 (2017)
[52] van der Meer, F. P.; Sluys, L. J., Mesh-independent modeling of both distributed and discrete matrix cracking in interaction with delamination in composites, Eng. Fract. Mech., 77, 4, 719-735 (2010)
[53] Iarve, E. V.; Gurvich, M. R.; Mollenhauer, D. H.; Rose, C. A.; Dávila, C. G., Mesh-independent matrix cracking and delamination modeling in laminated composites, Internat. J. Numer. Methods Engrg., 88, 8, 749-773 (2011) · Zbl 1242.74126
[54] Lu, X.; Chen, B.; Tan, V.; Tay, T., A separable cohesive element for modelling coupled failure in laminated composite materials, Composites A, 107, 387-398 (2018)
[55] Falcó, O.; Ávila, R. L.; Tijs, B.; Lopes, C. S., Modelling and simulation methodology for unidirectional composite laminates in a virtual test lab framework, Compos. Struct., 190, 137-159 (2018)
[56] Song, K.; Li, Y.; Rose, C., Continuum damage mechanics models for the analysis of progressive failure in open-hole tension laminates, (52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2011))
[57] Cervera, M.; Pelà, L.; Clemente, R.; Roca, P., A crack-tracking technique for localized damage in quasi-brittle materials, Eng. Fract. Mech., 77, 13, 2431-2450 (2010)
[58] Pelà, L.; Cervera, M.; Oller, S.; Chiumenti, M., A localized mapped damage model for orthotropic materials, Eng. Fract. Mech., 124-125, 196-216 (2014)
[59] Dávila, C. G.; Ambur, D. R.; McGowan, D. M., Analytical prediction of damage growth in notched composite panels loaded in compression, J. Aircr., 37, 5, 898-905 (2000)
[60] Graça-e Costa, R.; Alfaiate, J.; Dias-da Costa, D.; Sluys, L. J., A non-iterative approach for the modelling of quasi-brittle materials, Int. J. Fract., 178, 1, 281-298 (2012)
[61] Planas, J.; Elices, M.; Guinea, G. V., Cohesive cracks versus nonlocal models: Closing the gap, Int. J. Fract., 63, 2, 173-187 (1993)
[62] Mazars, J.; Pijaudier-Cabot, G., From damage to fracture mechanics and conversely: A combined approach, Int. J. Solids Struct., 33, 20, 3327-3342 (1996) · Zbl 0929.74091
[63] Simone, A.; Wells, G. N.; Sluys, L. J., From continuous to discontinuous failure in a gradient-enhanced continuum damage model, Comput. Methods Appl. Mech. Engrg., 192, 41, 4581-4607 (2003) · Zbl 1054.74719
[64] Comi, C.; Mariani, S.; Perego, U., An extended fe strategy for transition from continuum damage to mode i cohesive crack propagation, Int. J. Numer. Anal. Methods Geomech., 31, 2, 213-238 (2007) · Zbl 1108.74052
[65] Wu, L.; Becker, G.; Noels, L., Elastic damage to crack transition in a coupled non-local implicit discontinuous Galerkin/extrinsic cohesive law framework, Comput. Methods Appl. Mech. Engrg., 279, 379-409 (2014) · Zbl 1423.74068
[66] Wang, Y.; Waisman, H., From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials, Comput. Methods Appl. Mech. Engrg., 299, 57-89 (2016) · Zbl 1425.74410
[67] Li, X.; Chen, J., An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials, Comput. Methods Appl. Mech. Engrg., 315, 744-759 (2017) · Zbl 1439.74334
[68] Seabra, M. R.R.; Šuštarič, P.; Cesar de Sa, J. M.A.; Rodič, T., Damage driven crack initiation and propagation in ductile metals using xfem, Comput. Mech., 52, 1, 161-179 (2013) · Zbl 1308.74132
[69] Fang, E.; Cui, X.; Lua, J., A continuum damage and discrete crack-based approach for fatigue response and residual strength prediction of notched laminated composites, J. Compos. Mater., 51, 15, 2203-2225 (2017)
[70] van Dongen, B.; van Oostrum, A.; Zarouchas, D., A blended continuum damage and fracture mechanics method for progressive damage analysis of composite structures using xfem, Compos. Struct., 184, 512-522 (2018)
[71] Lu, X.; Ridha, M.; Tan, V. B.C.; Tay, T. E., Adaptive discrete-smeared crack (a-disc) model for multi-scale progressive damage in composites, Composites A, 125, Article 105513 pp. (2019)
[72] Le, M. Q.; Bainier, H.; Néron, D.; Ha-Minh, C.; Ladevèze, P., On matrix cracking and splits modeling in laminated composites, Composites A, 115, 294-301 (2018)
[73] Leone, F. A., Deformation gradient tensor decomposition for representing matrix cracks in fiber-reinforced materials, Composites A, 76, 334-341 (2015)
[74] Paepegem, W. V.; Baere, I. D.; Degrieck, J., Modelling the nonlinear shear stress-strain response of glass fibre-reinforced composites. Part i: Experimental results, Compos. Sci. Technol., 66, 10, 1455-1464 (2006)
[75] van der Meer, F. P.; Sluys, L. J., Continuum models for the analysis of progressive failure in composite laminates, J. Compos. Mater., 43, 20, 2131-2156 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.