×

zbMATH — the first resource for mathematics

Small area estimation of proportions under area-level compositional mixed models. (English) Zbl 07300898
Summary: This paper introduces area-level compositional mixed models by applying transformations to a multivariate Fay-Herriot model. Small area estimators of the proportions of the categories of a classification variable are derived from the new model, and the corresponding mean squared errors are estimated by parametric bootstrap. Several simulation experiments designed to analyse the behaviour of the introduced estimators are carried out. An application to real data from the Spanish Labour Force Survey of Galicia (north-west of Spain), in the first quarter of 2017, is given. The target is the estimation of domain proportions of people in the four categories of the variable labour status: under 16 years, employed, unemployed and inactive.
MSC:
62D05 Sampling theory, sample surveys
62J05 Linear regression; mixed models
62P25 Applications of statistics to social sciences
62P20 Applications of statistics to economics
Software:
saery
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aitchison, J., The statistical analysis of compositional data (1986), London: Chapman and Hall, London · Zbl 0688.62004
[2] Arima, S.; Bell, WR; Datta, GS; Franco, C.; Liseo, B., Multivariate Fay-Herriot Bayesian estimation of small area means under functional measurement error, J R Stat Soc Ser A, 180, 4, 1191-1209 (2017)
[3] Benavent, R.; Morales, D., Multivariate Fay-Herriot models for small area estimation, Comput Stat Data Anal, 94, 372-390 (2016) · Zbl 06918674
[4] Berg, E.; Fuller, WA, Estimators of error covariance matrices for small area prediction, Comput Stat Data Anal, 56, 2949-2962 (2012) · Zbl 1255.62159
[5] Berg, EJ; Fuller, WA, Small area prediction of proportions with applications to the Canadian Labour Force Survey, J Surv Stat Methodol, 2, 227-256 (2014)
[6] Boubeta, M.; Lombardía, MJ; Morales, D., Empirical best prediction under area-level Poisson mixed models, TEST, 25, 548-569 (2016) · Zbl 06833262
[7] Boubeta, M.; Lombardía, MJ; Morales, D., Poisson mixed models for studying the poverty in small areas, Comput Stat Data Anal, 107, 32-47 (2017) · Zbl 06917846
[8] Chambers, R.; Dreassi, E.; Salvati, N., Disease mapping via negative binomial regression M-quantiles, Stat Med, 33, 4805-4824 (2014)
[9] Chambers, R.; Salvati, N.; Tzavidis, N., Semiparametric small area estimation for binary outcomes with application to unemployment estimation for Local Authorities in the UK, J R Stat Soc Ser A, 179, 453-479 (2016)
[10] Chen, S.; Lahiri, P., Inferences on small area proportions, J Indian Soc Agric Stat, 66, 1, 121-124 (2012)
[11] Datta GS, Fay RE Ghosh M (1991) Hierarchical and empirical Bayes multivariate analysis in small area estimation. In: Proceedings of Bureau of the census 1991 annual research conference, U. S. Bureau of the Census, Washington, DC, pp 63-79
[12] Datta, GS; Ghosh, M.; Nangia, N.; Natarajan, K.; Berry, DA; Chaloner, KM; Geweke, JM, Estimation of median income of four-person families: a Bayesian approach, Bayesian analysis in statistics and econometrics, 129-140 (1996), New York: Wiley, New York
[13] Dreassi, E.; Ranalli, MG; Salvati, N., Semiparametric M-quantile regression for count data, Stat Methods Med Res, 23, 591-610 (2014)
[14] Egozcue, JJ; Pawlowsky-Glahn, V., Compositional data: the sample space and its structure, TEST, 28, 3, 599-638 (2019) · Zbl 1428.62220
[15] Egozcue, JJ; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C., Isometric logratio transformations for compositional data analysis, Math Geol, 35, 3, 279-300 (2003) · Zbl 1302.86024
[16] Esteban, MD; Morales, D.; Pérez, A.; Santamaría, L., Small area estimation of poverty proportions under area-level time models, Comput Stat Data Anal, 56, 2840-2855 (2012) · Zbl 1255.62349
[17] Fabrizi, E.; Ferrante, MR; Trivisano, C.; Pratesi, Monica, Hierarchical Beta regression models for the estimation of poverty and inequality parameters in small areas, Analysis of poverty data by small area methods (2016), New York: Wiley, New York
[18] Farrell, PJ, Bayesian inference for small area estimation, Sankhya Ser B, 62, 3, 402-416 (2000) · Zbl 1063.62529
[19] Fay, RE; Platek, R.; Rao, JNK; Särndal, CE; Singh, MP, Application of multivariate regression of small domain estimation, Small area statistics, 91-102 (1987), New York: Wiley, New York
[20] Ferrante, MR; Trivisano, C., Small area estimation of the number of firms’ recruits by using multivariate models for count data, Surv Methodol, 36, 2, 171-180 (2010)
[21] Ghosh, M.; Nangia, N.; Kim, D., Estimation of median income of four-person families: a Bayesian time series approach, J Am Stat Assoc, 91, 1423-1431 (1996) · Zbl 0885.62128
[22] González-Manteiga, W.; Lombardía, MJ; Molina, I.; Morales, D.; Santamaría, L., Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model, Comput Stat Data Anal, 51, 2720-33 (2007) · Zbl 1161.62349
[23] González-Manteiga, W.; Lombardía, MJ; Molina, I.; Morales, D.; Santamaría, L., Analytic and bootstrap approximations of prediction errors under a multivariate Fay-Herriot model, Comput Stat Data Anal, 52, 5242-5252 (2008) · Zbl 1452.62063
[24] González-Manteiga, W.; Lombardía, MJ; Molina, I.; Morales, D.; Santamaría, L., Bootstrap mean squared error of small-area EBLUP, J Stat Comput Simul, 78, 443-462 (2008) · Zbl 1274.62094
[25] Hobza, T.; Morales, D., Empirical best prediction under unit-level logit mixed models, J Off Stat, 32, 3, 661-669 (2016)
[26] Hobza, T.; Santamaría, L.; Morales, D., Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models, TEST, 27, 2, 270-294 (2018) · Zbl 1404.62075
[27] Larsen, MD, Estimation of small-area proportions using covariates and survey data, J Stat Plan Inference, 112, 89-98 (2003) · Zbl 1032.62009
[28] Liu, B.; Lahiri, P., Adaptive Hierarchical Bayes estimation of small area proportions, Calcutta Stat Assoc Bull, 69, 2, 150-164 (2017)
[29] López-Vizcaíno, E.; Lombardía, MJ; Morales, D., Multinomial-based small area estimation of labour force indicators, Stat Model, 13, 2, 153-178 (2013) · Zbl 07257453
[30] López-Vizcaíno, E.; Lombardía, MJ; Morales, D., Small area estimation of labour force indicators under a multinomial model with correlated time and area effects, J R Stat Soc Ser A, 178, 3, 535-565 (2015)
[31] Marhuenda, Y.; Molina, I.; Morales, D., Small area estimation with spatio-temporal Fay-Herriot models, Comput Stat Data Anal, 58, 308-325 (2013) · Zbl 1365.62037
[32] Marhuenda, Y.; Morales, D.; Pardo, MC, Information criteria for Fay-Herriot model selection, Comput Stat Data Anal, 70, 268-280 (2014) · Zbl 06970959
[33] Molina, I.; Saei, A.; Lombardía, MJ, Small area estimates of labour force participation under multinomial logit mixed model, J R Stati Soc Ser A, 170, 975-1000 (2007)
[34] Morales, D.; Pagliarella, MC; Salvatore, R., Small area estimation of poverty indicators under partitioned area-level time models, SORT Stat Oper Res Trans, 39, 1, 19-34 (2015) · Zbl 1322.62065
[35] Pawlowsky-Glahn, V.; Buccianti, A., Compositional data analysis (2011), Chichester: Wiley, Chichester · Zbl 1103.62111
[36] Rao, JNK, Small area estimation (2003), New-York: Wiley, New-York
[37] Rao, JNK; Molina, I., Small area estimation (2015), Hoboken: Wiley, Hoboken
[38] Saei A, Chambers R (2003) Small area estimation under linear an generalized linear mixed models with time and area effects. S3RI Methodology Working Paper M03/15, Southampton Statistical Sciences Research Institute
[39] Särndal, CE; Swensson, B.; Wretman, J., Model assisted survey sampling (1992), Berlin: Springer, Berlin · Zbl 0742.62008
[40] Scealy, JL; Welsh, AH, A directional mixed effects model for compositional expenditure data, J Am Stat Assoc, 112, 517, 24-36 (2017)
[41] Slud, EV; Maiti, T., Mean-squared error estimation in transformed Fay-Herriot models, J R Stat Soc Ser B, 68, 2, 239-257 (2006) · Zbl 1110.62029
[42] Souza, DB; Moura, FAS, Multivariate Beta regression with applications in small area estimation, J Off Stat, 32, 747-768 (2016)
[43] Tzavidis, N.; Ranalli, MG; Salvati, N.; Dreassi, E.; Chambers, R., Robust small area prediction for counts, Stat Methods Med Res, 24, 3, 373-395 (2015)
[44] Zhang, L.; Chambers, R., Small area estimates for cross-classifications, J R Stat Soc Ser B, 66, 2, 479-496 (2004) · Zbl 1062.62129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.