zbMATH — the first resource for mathematics

Rips complexes as nerves and a functorial Dowker-nerve diagram. (English) Zbl 07321615
Summary: Using ideas related to Dowker duality, we prove that the Rips complex at scale \(r\) is homotopy equivalent to the nerve of a cover consisting of sets of prescribed diameter. We then develop a functorial version of the Nerve theorem coupled with Dowker duality, which is presented as a Functorial Dowker-Nerve Diagram. These results are incorporated into a systematic theory of filtrations arising from covers. As a result, we provide a general framework for reconstruction of spaces by Rips complexes, a short proof of the reconstruction result of Hausmann, and completely classify reconstruction scales for metric graphs. Furthermore, we introduce a new extraction method for homology of a space based on nested Rips complexes at a single scale, which requires no conditions on neighboring scales nor the Euclidean structure of the ambient space.
05E45 Combinatorial aspects of simplicial complexes
55U10 Simplicial sets and complexes in algebraic topology
55U05 Abstract complexes in algebraic topology
57N16 Geometric structures on manifolds of high or arbitrary dimension
57N65 Algebraic topology of manifolds
Full Text: DOI
[1] Adamaszek, M.; Adams, H., The Vietoris-Rips complexes of a circle, Pacific Journal of Mathematics, 290, 1-40 (2017) · Zbl 1366.05124
[2] Attali, D., Lieutier, A., Salinas, D.: Vietoris-Rips complexes also provide topologically correct reconstructions of sampled shapes. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry, SoCG ’11, pp. 491-500. ACM, New York (2011) · Zbl 1283.68341
[3] Barmak, JA; Minian, EG, Strong homotopy types. Nerves and collapses, Discrete Comput. Geom., 47, 301-328 (2012) · Zbl 1242.57019
[4] Borsuk, K., On the imbedding of systems of compacta in simplicial complexes, Fundam. Math., 35, 217-234 (1948) · Zbl 0032.12303
[5] Burago, D.; Burago, Y.; Ivanov, S., A Course in Metric Geometry, Graduate Studies in Mathematics (2001), Providence: AMS, Providence · Zbl 0981.51016
[6] Cavanna, N., Sheehy, D.: The Generalized Persistent Nerve Theorem. arXiv:1807.07920
[7] Cencelj, M.; Dydak, J.; Vavpetič, A.; Virk, Ž., A combinatorial approach to coarse geometry, Topol. Appl., 159, 646-658 (2012) · Zbl 1273.54030
[8] Chazal, F.; Cohen-Steiner, D.; Lieutier, A., A sampling theory for compact sets in Euclidean space, Discrete Comput. Geom., 41, 461-479 (2009) · Zbl 1165.68061
[9] Chazal, F., Oudot, S.: Towards persistence-based reconstruction in Euclidean spaces. In: Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry. ACM, pp. 232-241 (2008) · Zbl 1271.57058
[10] Chowdhury, S.; Mémoli, F., A functorial Dowker theorem and persistent homology of asymmetric networks, J. Appl. Comput. Topol., 2, 115-175 (2018) · Zbl 1423.55038
[11] Dekster, BV, The Jung theorem in metric spaces of curvature bounded above, Proc. Am. Math. Soc., 125, 8, 2425-2433 (1997) · Zbl 0885.52009
[12] Dieck, Tammo Tom, Partitions of unity in homotopy theory, Compos. Math., 23, 2, 159-167 (1971) · Zbl 0212.55804
[13] Dold, A.: Lectures on Algebraic Topology, 2nd edn. Grundlehren der mathematischen Wissenschaften. Springer, New York (1995)
[14] Dowker, CH, Homology groups of relations, Ann. Math., 56, 1, 84-95 (1952) · Zbl 0046.40402
[15] Dydak, J., Extension theory: the interface between set-theoretic and algebraic topology, Topol. Appl., 74, 225-258 (1996) · Zbl 0869.54038
[16] Edelsbrunner, H., Harer, J.L.: Computational Topology. An Introduction. American Mathematical Society, Providence (2010) · Zbl 1193.55001
[17] Gasparovic, E., Gommel, M., Purvine, E., Sazdanovic, R., Wang, B., Wang, Y., Ziegelmeier, L.: A complete characterization of the \(1\)-dimensional intrinsic Čech persistence diagrams for metric graphs. In: Chambers, E., Fasy, B., Ziegelmeier, L. (eds): Research in Computational Topology. Association for Women in Mathematics Series, vol. 13. Springer, Cham (2018) · Zbl 1422.55037
[18] Ghrist, R.: Elementary Applied Topology. Createspace (2014) · Zbl 1427.55001
[19] Govc, D.; Škraba, P., An approximate nerve theorem, Found. Comput. Math., 18, 5, 1245-1297 (2018) · Zbl 1400.55003
[20] Gromov, M.: Hyperbolic groups in essays in group theory. In: Gersten, S.M. (ed.) MSRI Publ., vol. 8, pp. 75-263 (1987)
[21] Hatcher, A., Algebraic Topology (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1044.55001
[22] Hausmann, Jean-Claude, On the Vietoris-Rips complexes and a cohomology theory for metric spaces, Ann. Math. Stud., 138, 175-188 (1995) · Zbl 0928.55003
[23] Katz, M., Jung’s theorem in complex projective geometry, Q. J. Math. Oxf., 36, 4, 451-466 (1985) · Zbl 0586.53019
[24] Latschev, J., Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold, Arch. Math., 77, 6, 522-528 (2001) · Zbl 1001.53026
[25] Lefschetz, S.: Algebraic Topology. AMS Coll. Publ., vol. 27 (1942) · Zbl 0061.39302
[26] Leray, J., Sur la forme des espaces topologiques et sur les points fixes des représentations, J. Math. Pures Appl., 24, 95-167 (1945) · Zbl 0060.40703
[27] Mardešić, S.; Segal, J., Shape Theory (1982), Amsterdam: North-Holland, Amsterdam · Zbl 0495.55001
[28] Mugnolo, D.: What is actually a metric graph? arXiv:1912.07549
[29] Niyogi, P.; Smale, S.; Weinberger, S., Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39, 419-441 (2008) · Zbl 1148.68048
[30] Oudot, S.Y.: Persistence theory: from quiver representations to data analysis. American Mathematical Society, Providence (2015) · Zbl 1335.55001
[31] Roe, J.: Coarse cohomology and index theory for complete Riemannian manifolds. Memoirs Amer. Math. Soc. No., vol. 497 (1993) · Zbl 0780.58043
[32] Sakai, K.: Geometric Aspects of General Topology. Springer Monographs in Mathematics. Springer, Tokyo (2013) · Zbl 1280.54001
[33] Vietoris, L., Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen, Math. Ann., 97, 454-472 (1927) · JFM 53.0552.01
[34] Virk, Ž., 1-Dimensional intrinsic persistence of geodesic spaces, J. Topol. Anal., 12, 169-207 (2020) · Zbl 1443.55002
[35] Virk, Ž., Approximations of \(1\)-dimensional intrinsic persistence of geodesic spaces and their stability, Revista Matemática Complutense, 32, 195-213 (2019) · Zbl 1412.55018
[36] Virk, Ž.: Footprints of geodesics in persistent homology (in preparation)
[37] Zeeman, E.C.: Dihomology I: relations between homology theories. Proc. Lond. Math. Soc. s3-12(1), 609-638 (1962) · Zbl 0109.41302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.